

Benutzerhandbuch

UTG1000X Serie Funktions-/Arbiträr-Signal-Generator

Vorwort

Liebe Benutzer,

Hallo! Vielen Dank, dass Sie sich für dieses brandneue UNI-T Gerät entschieden haben. Damit Sie dieses Gerät sicher und korrekt verwenden können, lesen Sie bitte dieses Handbuch gründlich durch, insbesondere den Teil über die Sicherheitsanforderungen.

Nachdem Sie dieses Handbuch gelesen haben, sollten Sie es an einem leicht zugänglichen Ort aufbewahren, vorzugsweise in der Nähe des Geräts, um später darin nachschlagen zu können.

Copyright-Informationen

Das Urheberrecht ist Eigentum von Uni-Trend Technology(China)Limited.

UNI-T Produkte sind durch Patentrechte in China und im Ausland geschützt, einschließlich erteilter und angemeldeter Patente.

UNI-T behält sich das Recht vor, Produktspezifikationen und Preise zu ändern.

UNI-T behält sich alle Rechte vor. Die lizenzierten Softwareprodukte sind Eigentum von Uni-Trend und seinen Tochtergesellschaften oder Lieferanten, die durch nationale Urheberrechtsgesetze und internationale Verträge geschützt sind. Die Informationen in diesem Handbuch ersetzen alle zuvor veröffentlichten Versionen.

UNI-T ist die eingetragene Marke von Uni-Trend Technology(China)Co., Ltd.

Garantie

UNI-T garantiert, dass das Produkt ein Jahr lang frei von Mängeln ist. Wenn das Produkt weiterverkauft wird, beginnt die Garantiezeit mit dem Datum des ursprünglichen Kaufs bei einem autorisierten UNI-T-Händler. Sonden, anderes Zubehör und Sicherungen sind von dieser Garantie ausgenommen.

Wenn sich das Produkt innerhalb der Garantiezeit als defekt erweist, behält sich UNI-T das Recht vor, entweder das defekte Produkt ohne Berechnung von Teilen und Arbeitsaufwand zu reparieren oder das defekte Produkt gegen ein funktionierendes gleichwertiges Produkt auszutauschen. Ersatzteile und Produkte können fabrikneu sein oder die gleichen Spezifikationen wie fabrikneue Produkte aufweisen. Alle Ersatzteile, Module und Produkte gehen in das Eigentum von UNI-T über.

Der "Kunde" bezieht sich auf die natürliche oder juristische Person, die in der Garantie angegeben ist. Um die Garantieleistung in Anspruch nehmen zu können, muss der "Kunde" UNI-T innerhalb der geltenden Garantiezeit über die Mängel informieren und entsprechende Vorkehrungen für die Garantieleistung treffen. Der Kunde ist dafür verantwortlich, die defekten Produkte zu verpacken und an das von UNI-T benannte Wartungszentrum zu schicken, die Versandkosten zu tragen und eine Kopie des Kaufbelegs des ursprünglichen Käufers vorzulegen. Wenn das Produkt im Inland an den Standort des UNI-T Service-Centers versandt wird, übernimmt UNI-T die Kosten für die Rücksendung. Wenn das Produkt an einen anderen Ort geschickt wird, ist der Kunde für alle Versandkosten, Zölle, Steuern und sonstigen Kosten verantwortlich.

Diese Garantie gilt nicht für Defekte oder Schäden, die durch Unfall, Verschleiß von Maschinenteilen, unsachgemäßen Gebrauch und unsachgemäße oder mangelnde Wartung verursacht wurden. UNI-T ist im Rahmen dieser Garantie nicht verpflichtet, die folgenden Leistungen zu erbringen:

a) Jeglicher Reparaturschaden, der durch Installation, Reparatur oder Wartung des Produkts durch nicht von UNI-T autorisierte Servicemitarbeiter verursacht wurde.

- b) Jeglicher Reparaturschaden, der durch unsachgemäße Verwendung oder den Anschluss an ein inkompatibles Gerät verursacht wurde.
- c) Jeglicher Schaden oder jede Fehlfunktion, die durch die Verwendung einer Stromquelle verursacht wurde, die nicht den Anforderungen dieses Handbuchs entspricht.
- d) Jegliche Wartung an veränderten oder integrierten Produkten (falls solche Änderungen oder Integrationen zu einer Verlängerung der Wartungszeit oder einer Erhöhung des Wartungsaufwands führen).

Diese Garantie wurde von UNI-T für dieses Produkt geschrieben und ersetzt alle anderen ausdrücklichen oder stillschweigenden Garantien. UNI-T und seine Vertriebspartner bieten keine stillschweigenden Garantien für die Handelsfähigkeit oder Anwendbarkeit.

Bei Verletzung dieser Garantie, unabhängig davon, ob UNI-T und seine Vertriebspartner darüber informiert sind, dass indirekte, besondere, zufällige oder Folgeschäden auftreten können, sind UNI-T und seine Vertriebspartner nicht für diese Schäden verantwortlich

Kapitel 1 Benutzerhandbuch

Dieses Handbuch enthält die Sicherheitsanforderungen, die Installation und den Betrieb des Funktions-/Arbiträr-Wellenformgenerators der UTG100X-Serie.

1.1 Verpackung und Liste überprüfen

Wenn Sie das Gerät erhalten, überprüfen Sie bitte unbedingt die Verpackung und die Liste anhand der folgenden Schritte.

- Überprüfen Sie den Verpackungskarton und das Polstermaterial, um festzustellen, ob es durch äußere Einflüsse verformt oder zerrissen ist. Wenn Sie Fragen zum Produkt haben oder eine Beratung benötigen, wenden Sie sich bitte an den Händler oder das örtliche Büro.
- Nehmen Sie den Artikel vorsichtig heraus und vergleichen Sie ihn mit der Packliste.

1.2 Sicherheitsanforderungen

Dieser Abschnitt enthält Informationen und Warnungen, die beachtet werden müssen, damit das Gerät unter sicheren Bedingungen funktioniert. Darüber hinaus sollte der Benutzer auch die allgemeinen Sicherheitsvorschriften beachten.

Sicherheitsvorkehrungen

	Bitte beachten Sie die folgenden Hinweise, um einen möglichen Stromschlag und eine Gefährdung der persönlichen Sicherheit zu vermeiden.
Warnung	Benutzer müssen die folgenden konventionellen Sicherheitsvorkehrungen bei Betrieb, Wartung und Instandhaltung dieses Geräts beachten. UNI-T haftet nicht für Personen- und Sachschäden, die durch die Nichtbeachtung der folgenden Sicherheitsvorkehrungen durch den Benutzer verursacht werden. Dieses Gerät ist für professionelle Anwender und verantwortliche Organisationen für Messzwecke konzipiert.
	Verwenden Sie dieses Gerät nicht auf eine Weise, die nicht vom Hersteller angegeben ist. Dieses Gerät ist nur für den Gebrauch in Innenräumen geeignet, es sei denn, dies ist im Produkthandbuch anders angegeben.

Sicherheitshinweise

	"Warnung" weist auf das Vorhandensein einer Gefahr hin. Er erinnert den Benutzer daran, auf
	einen bestimmten Arbeitsvorgang, eine bestimmte Arbeitsmethode oder ähnliches zu achten.
Worpung	Es kann zu Verletzungen oder zum Tod kommen, wenn die in der "Warnung" genannten Regeln
warnung	nicht ordnungsgemäß ausgeführt oder beachtet werden. Fahren Sie erst dann mit dem nächsten
	Schritt fort, wenn Sie die in der "Warnung" genannten Bedingungen vollständig verstanden und
	erfüllt haben.

	"Vorsicht" weist auf das Vorhandensein einer Gefahr hin. Er erinnert den Benutzer daran, auf
	einen bestimmten Arbeitsvorgang, eine bestimmte Arbeitsmethode oder ähnliches zu achten.
Vorsicht	Das Produkt kann beschädigt werden oder wichtige Daten können verloren gehen, wenn die
VUISICIIL	Regeln in der "Vorsicht"-Anweisung nicht ordnungsgemäß ausgeführt oder beachtet werden.
	Fahren Sie erst dann mit dem nächsten Schritt fort, wenn Sie die im "Vorsicht"-Hinweis
	genannten Bedingungen vollständig verstanden und erfüllt haben.
	"Hinweis" kennzeichnet wichtige Informationen. Er erinnert die Benutzer daran, Verfahren,
Hinweis	Methoden und Bedingungen usw. zu beachten. Der Inhalt des "Hinweises" sollte bei Bedarf
	hervorgehoben werden.

Sicherheitszeichen

<u>/</u>	Gefahr	Sie weist auf die mögliche Gefahr eines elektrischen Schlags hin, der zu Verletzungen oder zum Tod führen kann.
	Warnung	Es weist Sie darauf hin, dass Sie vorsichtig sein sollten, um Verletzungen oder Produktschäden zu vermeiden.
	Vorsicht	Es weist auf mögliche Gefahren hin, die zu Schäden an diesem Gerät oder anderen Geräten führen können, wenn Sie eine bestimmte Vorgehensweise oder Bedingung nicht beachten. Wenn das Zeichen "Vorsicht" vorhanden ist, müssen alle Bedingungen erfüllt sein, bevor Sie mit dem Betrieb fortfahren.
	Hinweis	Es weist auf mögliche Probleme hin, die zu einem Ausfall des Geräts führen können, wenn Sie eine bestimmte Prozedur oder Bedingung nicht einhalten. Wenn das Zeichen "Hinweis" vorhanden ist, müssen alle Bedingungen erfüllt sein, damit das Gerät ordnungsgemäß funktioniert.
\sim	AC	Wechselstrom des Geräts. Bitte prüfen Sie den Spannungsbereich der Region.
	DC	Gleichstromgerät. Bitte prüfen Sie den Spannungsbereich Ihrer Region.
\downarrow	Erdung	Erdungsklemme für Rahmen und Chassis.
	Erdung	Schutzerdungsklemme.
4	Erdung	Erdungsklemme für die Messung.
Ο	AUS	Hauptstrom aus.
	ON	Hauptstrom eingeschaltet.
	Stromversor-	Standby-Stromversorgung: Wenn der Netzschalter ausgeschaltet ist, ist das
0	gung	Gerät nicht vollständig vom Stromnetz getrennt.
		Sekundäre Stromkreise, die über Transformatoren oder ähnliche Geräte an
CATI		Steckdosen angeschlossen sind, wie z. B. elektronische Instrumente und
		elektronische Geräte; elektronische Geräte mit Schutzmaßnahmen sowie alle
		Hoch- und Niederspannungsstromkreise, wie z. B. der Kopierer im Büro.

CAT II		CATII: Primärer Stromkreis der elektrischen Geräte, die über das Netzkabel an die Innensteckdose angeschlossen sind, wie z.B. mobile Werkzeuge, Haushaltsgeräte usw. Haushaltsgeräte, tragbare Werkzeuge (z.B. elektrische Bohrmaschine), Haushaltssteckdosen, Steckdosen, die mehr als 10 Meter vom CAT III-Stromkreis entfernt sind oder Steckdosen, die mehr als 20 Meter vom CAT IV-Stromkreis entfernt sind.
CAT III		Primärstromkreis großer Geräte, die direkt an den Verteiler angeschlossen sind, und Stromkreis zwischen dem Verteiler und der Steckdose (dreiphasiger Verteilerstromkreis umfasst einen einzelnen gewerblichen Beleuchtungsstromkreis). Fest installierte Geräte, wie z.B. mehrphasige Motoren und mehrphasige Sicherungskästen; Beleuchtungsanlagen und - leitungen in großen Gebäuden; Werkzeugmaschinen und Stromverteilerschränke in Industrieanlagen (Werkstätten).
CAT IV		Dreiphasiges öffentliches Stromaggregat und Stromversorgungsleitungen im Freien. Geräte, die für den "Erstanschluss" ausgelegt sind, wie z.B. das Stromverteilungssystem des Kraftwerks, Strommessgeräte, Front-End- Überlastungsschutz und jede Übertragungsleitung im Freien.
CE	Zertifizierung	CE ist eine eingetragene Marke der EU.
UK CA	Zertifizierung	UKCA ist eine eingetragene Marke von UK.
Entertek 4007082	Zertifizierung	ETL ist eine eingetragene Marke von Intertek. Es entspricht der UL STD 61010-1 und 61010-2-030, CSA STD C22.2 No.61010-1 und 61010-2-030.
X	Abfall	Dieses Produkt entspricht den Kennzeichnungsanforderungen der WEEE- Richtlinie(2002/96/EC). Dieses zusätzliche Etikett weist darauf hin, dass dieses elektrische/elektronische Produkt nicht im Hausmüll entsorgt werden darf.
()	EFUP	Diese Kennzeichnung für umweltfreundliche Nutzung (EFUP) zeigt an, dass gefährliche oder giftige Substanzen innerhalb des angegebenen Zeitraums nicht auslaufen oder Schäden verursachen werden. Die umweltfreundliche Nutzungsdauer dieses Produkts beträgt 40 Jahre, in denen es sicher verwendet werden kann. Nach Ablauf dieses Zeitraums sollte es dem Recycling zugeführt werden.

Sicherheitsanforderungen

Warnung	
Vorbereitung vor der Verwendung	Bitte schließen Sie das Gerät mit dem mitgelieferten Netzkabel an das Stromnetz an; Die AC-Eingangsspannung des Netzes erreicht den Nennwert dieses Geräts. Siehe das Produkthandbuch für den spezifischen Nennwert. Der Netzspannungsschalter dieses Geräts passt sich der Netzspannung an; Die Netzspannung der Netzsicherung dieses Geräts ist korrekt; Es wird nicht zur Messung des Hauptstromkreises verwendet.
Prüfen Sie alle Nennwerte der Klemmen	Bitte überprüfen Sie alle Nennwerte und Kennzeichnungshinweise auf dem Produkt, um Feuer und Auswirkungen von Überstrom zu vermeiden. Bitte konsultieren Sie vor dem Anschluss das Produkthandbuch für detaillierte Nennwerte.
Verwenden Sie das Netzkabel richtig	Sie können nur das spezielle Netzkabel für das Gerät verwenden, das von den örtlichen und staatlichen Normen zugelassen ist. Prüfen Sie, ob die Isolierung des Kabels beschädigt ist oder das Kabel freiliegt, und testen Sie, ob das Kabel leitfähig ist. Wenn das Kabel beschädigt ist, ersetzen Sie es bitte, bevor Sie das Gerät benutzen.
Instrumenten-Erdung	Um einen elektrischen Schlag zu vermeiden, muss der Erdungsleiter mit der Erde verbunden sein. Dieses Produkt ist über den Erdungsleiter des Netzteils geerdet. Bitte stellen Sie sicher, dass das Gerät geerdet ist, bevor Sie es einschalten.
AC-Stromversorgung	Bitte verwenden Sie das für dieses Gerät spezifizierte Netzgerät. Bitte verwenden Sie das in Ihrem Land zugelassene Netzkabel und vergewissern Sie sich, dass die Isolierung nicht beschädigt ist.
Verhinderung von Elektrostatik	Dieses Gerät kann durch statische Elektrizität beschädigt werden. Testen Sie es daher nach Möglichkeit in einem antistatischen Bereich. Bevor das Netzkabel an dieses Gerät angeschlossen wird, sollten die internen und externen Leiter kurz geerdet werden, um statische Elektrizität abzubauen. Der Schutzgrad dieses Geräts beträgt 4 kV für Kontaktentladung und 8 kV für Luftentladung.
Zubehör für die Messung	Das Messzubehör gehört zu einer niedrigeren Klasse und ist definitiv nicht für die Messung an Hauptstromkreisen, CAT II, CAT III oder CAT IV geeignet. Tastkopf-Baugruppen und Zubehör gemäß IEC 61010-031 und Stromsensoren aus dem Bereich der IEC 61010-2-032 können die Anforderungen erfüllen.

	Bitte verwenden Sie die Eingangs-/Ausgangsanschlüsse dieses Geräts auf angemessene Weise. Legen Sie keine Eingangssignale an den
Verwenden Sie den	Ausgangsanschluss dieses Geräts. Legen Sie keine Signale, die den Nennwert
Eingangs-	nicht erreichen, in den Eingangsanschluss dieses Geräts. Die Sonde oder
/Ausgangsanschluss	anderes Anschlusszubehör sollte gut geerdet sein, um Schäden am Gerät oder
dieses Geräts richtig	Funktionsstörungen zu vermeiden. Den Nennwert des Eingangs-
	/Ausgangsanschlusses dieses Geräts entnehmen Sie bitte dem
	Produkthandbuch.
	Bitte verwenden Sie eine Netzsicherung mit den angegebenen Spezifikationen.
Netzsicherung	Wenn die Sicherung ausgetauscht werden muss, muss sie durch eine andere
The 2010 hor ang	ersetzt werden, die den angegebenen Spezifikationen entspricht, und zwar
	durch das von UNI-T autorisierte Wartungspersonal.
Demontage und	Im Inneren des Geräts sind keine Komponenten für den Bediener vorhanden.
Beinigung	Entfernen Sie die Schutzabdeckung nicht.
	Die Wartung muss von qualifiziertem Personal durchgeführt werden.
	Verwenden Sie dieses Gerät in Innenräumen in einer sauberen und trockenen
Serviceumgebung	Umgebung mit einer Umgebungstemperatur von 10 °C \sim +40 °C. Verwenden
	Sie dieses Gerät nicht in explosiver, staubiger oder feuchter Luft.
Nicht in feuchter	Verwenden Sie dieses Gerät nicht in feuchter Umgebung, um das Risiko eines
Umgebung betreiben	internen Kurzschlusses oder eines Stromschlags zu vermeiden.
Nicht in entflammbarer	Verwenden Sie dieses Gerät nicht in einer entflammbaren oder explosiven
und explosiver	Umgebung, um Produktschäden oder Verletzungen zu vermeiden.
Umgebung betreiben	
Vorsicht	
	Sollte dieses Gerät defekt sein, wenden Sie sich bitte an das autorisierte
· · ·	Wartungspersonal von UNI-T, um es zu testen. Jegliche Wartung, Einstellung
Abnormitat	oder der Austausch von Teilen muss von den zuständigen Mitarbeitern von UNI-
	T durchgeführt werden.
	Blockieren Sie nicht die Lüftungsöffnungen an der Seite und Rückseite des
	Geräts;
	Achten Sie darauf, dass keine externen Gegenstände durch die
Kühlung	Lüftungsöffnungen in das Gerät gelangen;
	Bitte sorgen Sie für eine ausreichende Belüftung und lassen Sie an beiden
	Seiten, der Vorder- und Rückseite des Geräts einen Abstand von mindestens 15
	cm
	Bitte transportieren Sie dieses Gerät sicher, damit es nicht verrutscht und
Sicherer Transport	dadurch die Tasten, Knöpfe oder Schnittstellen auf dem Armaturenbrett
	beschädigt werden können.

	Eine schlechte Belüftung führt zu einem Anstieg der Gerätetemperatur und
Pichtigo Polüftung	damit zu Schäden an diesem Gerät. Bitte sorgen Sie für eine gute Belüftung
	während des Gebrauchs und überprüfen Sie regelmäßig die Lüftungsschlitze
	und Ventilatoren.
Cauban und tracken	Bitte ergreifen Sie Maßnahmen, um zu vermeiden, dass Staub oder Feuchtigkeit
Sauber und trocken	in der Luft die Leistung dieses Geräts beeinträchtigen. Bitte halten Sie die
naiten	Oberfläche des Geräts sauber und trocken.
Hinweis	
	Der empfohlene Kalibrierungszeitraum beträgt ein Jahr. Die Kalibrierung sollte
Kalibrierung	nur von qualifiziertem Personal durchgeführt werden.

1.3 Anforderungen an die Umwelt

Dieses Gerät ist für die folgende Umgebung geeignet:

- Verwendung in Innenräumen
- Verschmutzungsgrad 2
- In Betrieb: Höhe unter 2000 Metern; in Nichtbetrieb: Höhe unter 15000 Metern;
- Wenn nicht anders angegeben, beträgt die Betriebstemperatur 10 bis +40°C; die Lagertemperatur beträgt -20 bis + 60°C.
- In Betrieb, Luftfeuchtigkeit Temperatur unter bis +35℃, ≤90% relative Luftfeuchtigkeit;
- Im Nichtbetrieb, Luftfeuchtigkeitstemperatur +35℃ bis +40℃, ≤60% relative Luftfeuchtigkeit.

Auf der Rückseite und an der Seite des Geräts befinden sich Lüftungsöffnungen. Sorgen Sie also dafür, dass die Luft durch die Lüftungsöffnungen des Gerätegehäuses strömt. Um zu verhindern, dass übermäßiger Staub die Lüftungsöffnungen blockiert, reinigen Sie das Gehäuse des Geräts regelmäßig. Das Gehäuse ist nicht wasserdicht. Trennen Sie bitte zuerst die Stromversorgung und wischen Sie das Gehäuse dann mit einem trockenen oder leicht angefeuchteten weichen Tuch ab.

1.4 Anschließen des Netzteils

Die Spezifikation der AC-Eingangsleistung.

Spannungsbereich	Frequenz
100-240VAC (fluktuierend ±10%)	50/60Hz
100-120VAC (fluktuierend ±10%)	400Hz

Bitte verwenden Sie das beiliegende Netzkabel zum Anschluss an den Stromanschluss.

Anschließen an das Servicekabel

Dieses Gerät ist ein Sicherheitsprodukt der Klasse I. Das mitgelieferte Netzkabel hat eine gute Leistung in Bezug auf die Gehäuseerdung. Dieser Spektrumanalysator ist mit einem dreipoligen Netzkabel ausgestattet, das den internationalen Sicherheitsstandards entspricht. Es bietet eine gute Gehäuseerdung für die Spezifikationen Ihres Landes oder Ihrer Region.

Bitte installieren Sie das AC-Netzkabel wie folgt,

• Vergewissern Sie sich, dass das Netzkabel in einem guten Zustand ist.

- Lassen Sie genügend Platz für den Anschluss des Netzkabels.
- Stecken Sie das beiliegende dreipolige Netzkabel in eine gut geerdete Steckdose.

1.5 Elektrostatischer Schutz

Elektrostatische Entladungen können zu Schäden an Komponenten führen. Bauteile können durch elektrostatische Entladung während des Transports, der Lagerung und der Verwendung unsichtbar beschädigt werden.

Die folgenden Maßnahmen können die Schäden durch elektrostatische Entladung verringern.

- Testen in antistatischer Umgebung, soweit möglich;
- Bevor Sie das Netzkabel an das Gerät anschließen, sollten Sie die Innen- und Außenleiter des Geräts;
- kurz geerdet, um statische Elektrizität abzuleiten;
- Stellen Sie sicher, dass alle Geräte ordnungsgemäß geerdet sind, um die Ansammlung statischer Elektrizität zu verhindern.

1.6 Vorbereitungsarbeiten

1. Schließen Sie das Stromkabel an, stecken Sie den Netzstecker in die Schutzerdungsbuchse und richten Sie die Vorrichtung nach Ihren Wünschen aus.

2. Drücken Sie den Softwareschalter 💷 auf der Vorderseite, das Gerät wird hochgefahren.

1.7 Fernsteuerung

Der Funktions-/Arbiträr-Signal-Generator der UTG1000X-Serie unterstützt die Kommunikation mit dem Computer über die USB-Schnittstelle. Der Benutzer kann SCPI über die USB-Schnittstelle in Verbindung mit einer Programmiersprache oder NI-VISA verwenden, um das Gerät fernzusteuern und andere programmierbare Geräte zu bedienen, die ebenfalls SCPI unterstützen.

Ausführliche Informationen über die Installation, den Fernbedienungsmodus und die Programmierung finden Sie im UTG1000X Series Programming Manual auf der offiziellen Website http://www.uni-trend.com

1.8 Hilfe-Informationen

Der Funktions-/Arbiträr-Signal-Generator der UTG1000X-Serie verfügt über ein eingebautes Hilfesystem für jede Funktionstaste und jede Menüsteuerungstaste. Drücken Sie einen beliebigen Softkey oder eine Taste lange, um die Hilfeinformationen aufzurufen.

Kapitel 2 Einführung in die UTG1000X Serie

Dieses Produkt verfügt über eine DDS-Funktion (direkte digitale Frequenzsynthese). Es kann hochpräzise und stabile Wellenformen mit einer Auflösung von nur 1 µHz erzeugen. Es ist ein wirtschaftlicher, leistungsstarker Multifunktions-/Arbiträr-Signal-Generator. Er kann hochpräzise, stabile, reine und verzerrungsarme Signale erzeugen. Die UTG1000X-Serie verfügt über eine komfortable Bedienung, hervorragende technische Indikatoren und ein übersichtliches Grafikdisplay. Ein Mehrzweckgerät für die Bedürfnisse des Lernens, Testens und der Verbesserung der Arbeitseffizienz.

2.1 Hauptmerkmale

- ▶ Frequenzausgabe von 40MHz/20MHz, 1µHz Auflösung des gesamten Frequenzbandes
- DDS-Funktion, 200MSa/s Abtastrate und 16-bit vertikale Auflösung
- Rechteckwelle mit einer maximalen Frequenz von 20MHz, geringer Jitter
- Mehrere analoge und digitale Modulationsfunktionen: AM, FM, PM, ASK, FSK, PSK und PWM
- Unterstützt die Ausgabe von Sweep-Frequenzen und Impulsfolgen
- Beliebige Wellen können durch den oberen Software-Computer erzeugt werden
- Eingebauter Vorverstärker mit einer maximalen Ausgangsleistung von 4 W (nur für das Modell PA)
- 7 Bit harter Frequenzmesser
- Eingebaute 200 arbiträre Wellen
- Standard USB-Host und USB-Gerät
- 4,3-Zoll-TFT-LCD mit hoher Auflösung

2.2 Merkmale der Ausgabe

Kanal	CH1, CH2
Amplitude Bereich	1mVpp~10Vpp (50Ω)
Wellenform	Sinuswelle, Rechteckwelle, Pulswelle, Rampenwelle, Arbiträrwelle,
Wellenionn	Rauschen, DC
Modulation	AM, FM, PM, ASK, FSK, PSK, PWM
Suchlauffrequenz	Log, Line

2.3 Bedienfeld und Schlüssel

2.3.1 Frontplatte

Das Produkt hat ein einfaches, intuitives und leicht zu bedienendes Bedienfeld, wie in der folgenden Abbildung gezeigt.

1. Der Bildschirm

Das hochauflösende 4,3-Zoll-TFT-Farb-LCD zeigt den Ausgabestatus von Kanal 1 und Kanal 2, das Funktionsmenü und andere wichtige Informationen durch verschiedene Farben deutlich an. Die humanisierte Systemschnittstelle macht die Interaktion zwischen Menschen und Computer einfacher und verbessert die Arbeitseffizienz.

2. Funktionstaste

Mit der Taste Mode, Wave, Utility können Sie die Modulation, die Auswahl der Grundwelle und die Hilfsfunktion einstellen.

3. Numerische Tastatur

Zifferntaste 0-9, Dezimalpunkt ".", Symboltaste "+/-" zur Eingabe des Parameters. Die linke Taste wird für die Rücktaste und das Löschen des vorherigen Bits der aktuellen Eingabe verwendet.

4. Multifunktionsknopf / Pfeiltaste

Der Multifunktionsknopf dient zum Ändern der Nummer (im Uhrzeigersinn drehen, um die Nummer zu erhöhen) oder als Pfeiltaste. Drücken Sie den Knopf, um die Funktion auszuwählen oder den Einstellungsparameter zu bestätigen.

Wenn Sie den Multifunktionsknopf und die Pfeiltasten zum Einstellen der Parameter verwenden, können Sie damit die digitalen Bits umschalten, das vorherige Bit löschen oder die Cursorposition (nach links oder rechts) verschieben.

5. CH1/CH2 Ausgabe-Steuerschlüssel

Schnelles Umschalten der Anzeige des aktuellen Kanals auf dem Bildschirm (Die hervorgehobene CH1-Infobar zeigt den aktuellen Kanal an, die Parameterliste zeigt die relevanten Informationen zu CH1 an, so dass Sie die Wellenformparameter von Kanal 1 einstellen können). Wenn CH1 der aktuelle Kanal ist (CH1-Infobalken ist hervorgehoben), drücken Sie die Taste CH1, um die CH1-Ausgabe schnell ein- bzw. auszuschalten, oder drücken Sie die Taste Utility, um den Balken auszublenden, und drücken Sie dann die Softtaste CH1 Setting, um die Einstellung vorzunehmen. Wenn die Kanalausgabe aktiviert ist, leuchtet die Kontrollleuchte auf und die Infoleiste zeigt den Ausgabemodus ("Wave", "Modulate" oder "Linear") und das Ausgangssignal des Ausgangsports an. Wenn die Taste CH1 oder CH2 deaktiviert ist, erlischt die Kontrollleuchte, in der Infoleiste wird "OFF" angezeigt und der Ausgang wird ausgeschaltet.

6. Kanal 2

Ausgangsschnittstelle von CH2.

7. Kanal 1

Ausgangsschnittstelle von CH1.

8. Externe digitale Modulations- oder Frequenzmesserschnittstelle oder Sync-Eingangsschnittstelle

Bei der ASK-, FSK- und PSK-Signalmodulation wird das Modulationssignal, wenn die Modulationsquelle extern gewählt wird, über die externe digitale Modulationsschnittstelle eingespeist, und die entsprechende Ausgangsamplitude, -frequenz und -phase werden durch den Signalpegel der externen digitalen Modulationsschnittstelle bestimmt. Wenn die Triggerquelle der Impulskette als extern ausgewählt ist, wird ein TTL-Impuls mit einer bestimmten Polarität über die externe digitale Modulationsschnittstelle empfangen, die die Abtastung starten oder die Impulskette mit einer bestimmten Anzahl von Zyklen ausgeben kann. Wenn der Impulsfolgemodus gated ist, wird das Gating-Signal über die externe digitale Modulationsschnittstelle eingegeben. Wenn Sie die Frequenzmesserfunktion verwenden, wird das Signal (kompatibel mit TTL-Pegel) über diese Schnittstelle eingegeben.

9. Menü Bedienung Softkey

Wählen Sie den Inhalt der Beschriftungen (am unteren Rand des Funktionsbildschirms), die den Beschriftungen der Softkeys entsprechen, aus oder lassen Sie sich diese anzeigen, und stellen Sie die Parameter mit dem Ziffernblock, den Multifunktionsknöpfen oder den Pfeiltasten ein.

10. Stromversorgungsschalter

Drücken Sie den Netzschalter, um das Gerät einzuschalten, drücken Sie ihn erneut, um es auszuschalten.

11. USB-Schnittstelle

Dieses Gerät unterstützt USB im FAT32-Format mit einer maximalen Kapazität von 32 GB. Es kann zum Lesen oder Importieren von auf USB gespeicherten Arbiträrsignaldateien über die USB-Schnittstelle verwendet werden. Über diesen USB-Anschluss kann das Systemprogramm aktualisiert werden, um sicherzustellen, dass der Funktions-/Arbiträr-Signal-Generator die neueste von der Firma veröffentlichte Programmversion ist.

Hinweise

Die Kanalausgangsschnittstelle verfügt über eine Überspannungsschutzfunktion, die ausgelöst wird, wenn die folgende Bedingung erfüllt ist.

Die Amplitude des Geräts ist größer als 250 mVpp, die Eingangsspannung ist größer als | ±12.5V | , die Frequenz ist kleiner als 10 kHz.

Die Amplitude des Geräts ist kleiner als 250 mVpp, die Eingangsspannung ist größer als | ±2.5V | , die Frequenz ist kleiner als 10 kHz.

Wenn die Überspannungsschutzfunktion aktiviert ist, schaltet der Kanal den Ausgang automatisch ab.

2.3.2 Rückseite

Wie in der folgenden Abbildung gezeigt.

1. Stromausgang (- nur PA-Modelle)

Ausgangsschnittstelle für Strom.

2. USB-Schnittstelle

Über die USB-Schnittstelle können Sie eine Verbindung zur Software des Host-Computers herstellen, um das Gerät zu steuern (z.B. um das Systemprogramm zu aktualisieren, um sicherzustellen, dass das aktuelle Funktions-/Arbiträrsignalgenerator-Programm die neueste vom Unternehmen veröffentlichte Version ist).

3. Sicherheitsschloss

Das Sicherheitsschloss (separat erhältlich) kann verwendet werden, um das Gerät in einer festen Position zu halten.

4. AC Stromeingang Schnittstelle

Die Wechselstrom-Spezifikation des UTG1000X Funktions-/Arbiträr-Signal-Generatorens ist 100~240V, 45~ 440Hz; Netzsicherung: 250V, T2A. Wenn der Wellenformgenerator ein Signal mit hohem SNR ausgeben muss, wird empfohlen, das offizielle Standardnetzteil zu verwenden.

5. Erdungsanschluss

Es bietet einen elektrischen Erdungsanschluss, an dem Sie ein antistatisches Armband befestigen können, um elektrostatische Schäden (ESD) zu reduzieren, während Sie den Prüfling handhaben oder anschließen.

2.3.3 Funktion Schnittstelle

Wie in der folgenden Abbildung gezeigt,

1. CH1 info, wird der aktuell ausgewählte Kanal hervorgehoben.

"50Ω" gibt die Impedanz 50Ω an, die am Ausgang angepasst werden soll (1Ω bis 999Ω können eingestellt werden, oder hohe Impedanz, die Werkseinstellung ist Highz.)

" Zeigt an, dass der aktuelle Modus eine Sinuswelle ist. (In verschiedenen Arbeitsmodi kann es "Grundwelle", "Modulation", "linear", "logarithmisch" oder "AUS" sein).

2. Die Informationen auf CH2 sind dieselben wie auf CH1.

3. Liste der Wellenparameter:

Zeigt die Parameter der aktuellen Welle in einem Listenformat an. Wenn ein Element in der Liste reines Weiß anzeigt, kann es mit dem Menü-Softkey, der numerischen Tastatur, den Pfeiltasten und dem Multifunktionsknopf eingestellt werden. Wenn die untere Farbe des aktuellen Zeichens die Farbe des aktuellen Kanals ist (sie ist weiß, wenn sich das System in der Einstellung befindet), bedeutet dies, dass dieses Zeichen in den Bearbeitungszustand übergeht und die Parameter mit den Pfeiltasten oder der numerischen Tastatur oder dem Multifunktionsknopf eingestellt werden können.

4. Wellenanzeigebereich:

Zeigt die aktuelle Welle des Kanals an (Sie können anhand der Farbe oder der CH1/CH2-Infobalken erkennen, zu welchem Kanal die aktuelle Welle gehört; der Wellenparameter wird in der Liste auf der linken Seite angezeigt).

Hinweise: Bei der Einrichtung des Systems gibt es keinen Wellenanzeigebereich. Dieser Bereich wird zu einer Liste von Parametern erweitert.

5. Softkey-Etikett:

Zur Kennzeichnung des Funktionsmenü-Softkeys und des Menübedienungs-Softkeys.

Hervorheben: Es zeigt an, dass die rechte Mitte des Etiketts die Farbe des aktuellen Kanals oder das Grau anzeigt, wenn das System eingestellt ist, und die Schrift ist rein weiß.

Kapitel 2 Schnellstart

3.1 Ausgabe Grundwelle

3.1.1 Ausgangsfrequenz

Die Standard-Wellenform ist eine Sinuswelle mit einer Frequenz von 1 kHz und einer Amplitude von 100 mV Spitze-Spitze (Anschluss mit 50Ω).

Die einzelnen Schritte zum Ändern der Frequenz auf 2,5 MHz,

Drücken Sie nacheinander die Taste Wave → Sine → Frequency, verwenden Sie die numerische Tastatur zur Eingabe von 2,5 und wählen Sie dann die Einheit des Parameters auf MHz.

3.1.2 Ausgang Amplitude

Die Standard-Wellenform ist eine Sinuswelle mit einer Amplitude von 100 mV Spitze-Spitze (Anschluss mit 50Ω).

Die einzelnen Schritte, um die Amplitude auf 300mVpp zu ändern,

```
Drücken Sie abwechselnd die Taste Wave \rightarrow Sine \rightarrow Amp, verwenden Sie die numerische Tastatur zur Eingabe von
```

300 und wählen Sie dann die Einheit des Parameters auf mVpp.

3.1.3 DC Offset Spannung

Die Offset-Gleichspannung der Wellenform ist standardmäßig 0 V Sinus (Anschluss mit 50Ω).

Die einzelnen Schritte zur Änderung der DC-Offsetspannung auf -150mV,

```
Drücken Sie abwechselnd die Taste Wave →Sine→Offset, verwenden Sie die numerische Tastatur zur Eingabe von -150 und wählen Sie dann die Einheit des Parameters auf mVpp.
```

Hinweise: Die Multifunktions- und Pfeiltasten können auch zum Einstellen der Parameter verwendet werden.

3.1.4 Phase

Die Phase der Wellenform ist standardmäßig 0°.

Die einzelnen Schritte, um die Phase auf 90° einzustellen,

Drücken Sie die Taste Phase, verwenden Sie die numerische Tastatur zur Eingabe von 90 und wählen Sie dann die Einheit des Parameters für [©].

3.1.5 Tastverhältnis der Impulswelle

Die Standardfrequenz der Pulswelle beträgt 1 kHz, das Tastverhältnis 50%.

Die spezifischen Schritte zur Einstellung des Tastverhältnisses auf 25% (begrenzt durch eine minimale Pulsbreite von 22ns),

Drücken Sie abwechselnd die Taste Wave →Pulse→Duty, verwenden Sie die numerische Tastatur zur Eingabe von 25 und wählen Sie dann die Einheit des Parameters %.

3.1.6 Symmetrie der Rampenwelle

Die Standardfrequenz der Rampenwelle ist 1 kHz. Nehmen Sie als Beispiel eine Dreieckswelle mit einer Symmetrie von 75%,

Drücken Sie abwechselnd die Taste Wave →Ramp→Symmetry, verwenden Sie die numerische Tastatur zur Eingabe von 75 und wählen Sie dann die Einheit des Parameters auf %.

3.1.7 DC

Die Voreinstellung ist 0 V.

Die einzelnen Schritte zum Wechsel von DC zu 3 V,

Drücken Sie nacheinander die Taste Wave \rightarrow Next Page \rightarrow DC, geben Sie über die numerische Tastatur 3 ein und wählen Sie dann die Einheit des Parameters M.

3.1.8 Lärmwelle

Die Standardamplitude ist 100mVpp, der DC-Offset ist 0 V quasi Gaußsches Rauschen.

Nehmen Sie als Beispiel die Einstellung von quasi Gaußschem Rauschen mit einer Amplitude von 300mVpp, DC-Offset 1V,

Drücken Sie nacheinander die Taste Wave → Next Page → Noise → Amp, geben Sie über die numerische Tastatur 300 ein und wählen Sie dann die Einheit des Parameters mVpp, drücken Sie die Taste Offset, geben Sie über die numerische Tastatur 1 ein und wählen Sie dann die Einheit des Parameters M.

3.1.9 Leistung

Die volle Bandbreite des eingebauten Leistungsvorverstärkers kann bis zu 100 kHz erreichen, die maximale Ausgangsleistung beträgt 4 W, die Ausgangsanstiegsgeschwindigkeit ist größer als 18 V/µs.

drücken Sie CH2→PAb Output→On. Der Leistungsausgang ist aktiviert, was bedeutet, dass der Leistungsvorverstärkerausgang aktiviert ist. Die Ausgangsschnittstelle befindet sich auf der Rückseite, BNC-Anschluss.

3.2 Hilfsfunktion

Das Dienstprogramm kann den Frequenzmesser, das System und die Leistung für CH1 und CH2 einstellen. Die spezifischen Funktionen sind in der folgenden Tabelle aufgeführt.

Menü Funktion	Funktion Unter-	Einstellung	Beschreibung
	Menü		
	Kanal Ausgabe	AUS, EIN	
	Kanal rückwärts	AUS, EIN	
	Sync-Ausgang	CH1, CH2, AUS	
	Nachladen	50Ω,	1Ω bis 999Ω
		hohe Impedanz	
CH1, CH2	Amplitudengrenze	AUS, EIN	
Einstellung	Obere Grenze der		Um die Obergrenze für
	Amplitude		die Amplitudenausgabe
			des Kanals festzulegen
	Untere Grenze der		Um die Untergrenze für
	Amplitude		die Amplitudenausgabe
			des Kanals festzulegen

3.2.1 Kanal Einstellung

Wählen Sie Utility→CH1 Setting (oder CH2 Einstellung) um den Kanal einzustellen.

1. Kanal Ausgang

Wählen Sie Channel Output, Sie können "AUS" oder "EIN" wählen.

Hinweise: Drücken Sie die Taste CH1, CH2 auf der Vorderseite, um den Kanalausgang schnell zu aktivieren.

2. Kanal Rückwärts

Wählen Sie Channel Reverse, Sie können "AUS" oder "EIN" wählen.

3. Sync-Ausgang

Wählen Sie Sync Output, Sie können "CH1", "CH2" oder "AUS" wählen.

4. Nachladen

Wählen Sie Load, der Eingangsbereich ist 1 Ω bis 999 Ω , oder Sie können 50 Ω , hohe Impedanz wählen.

5. Amplitude Grenze

Es unterstützt die Amplitudenbegrenzung zum Schutz bei Last. Wählen Sie Amp Limit, es kann "AUS" oder "EIN" gewählt werden.

6. Obere Grenze der Amplitude

Wählen Sie Upper, um den oberen Grenzbereich der Amplitude festzulegen.

7. Untere Grenze der Amplitude

Wählen Sie Lower, um den unteren Grenzbereich der Amplitude festzulegen.

3.2.2 Frequenzmesser

Dieser Funktions-/Arbiträrsignalgenerator kann die Frequenz und das Tastverhältnis von kompatiblen TTL-Pegelsignalen messen. Der Bereich der Messfrequenz beträgt 100mHz~200MHz. Wenn Sie den Frequenzmesser verwenden, wird das kompatible TTL-Pegelsignal über einen externen digitalen Modulations- oder Frequenzmesseranschluss (FSK /CNT/Sync-Anschluss) eingegeben.

Wählen Sie Utility → Frequency Meter, um die Werte für "Frequenz", "Periode" und "Tastverhältnis" des Signals in der Parameterliste zu lesen. Wenn kein Signal anliegt, wird in der Parameterliste des Frequenzmessers immer der zuletzt gemessene Wert angezeigt. Der Frequenzmesser aktualisiert die Anzeige nur, wenn ein TTL-kompatibles Signal über einen externen digitalen Modulations- oder Frequenzmesseranschluss (FSK/CNT-Anschluss) eingegeben wird.

3.2.3 Beliebiger Wellenmanager

Löschen, exportieren und importieren Sie beliebige Wellen von den eingebauten und externen Speichergeräten.

Lokale beliebige Welle, Ansicht

Wählen Sie die Utility \rightarrow Tool \rightarrow ArbMng \rightarrow Local \rightarrow OK \rightarrow Other \rightarrow OK. Alle Arbiträrwellen in der Liste Andere können durchsucht werden.

Willkürliche Welle des Benutzers, Löschen

Wählen Sie Utility→Tool→ArbMng→User→OK. Andere Liste, um eine beliebige Welle auszuwählen, die Sie löschen möchten, z.B. "ABA_1_2.bsv", wählen Sie Delete, die beliebige Welle wird gelöscht.

Willkürliche Welle des Benutzers, Aktuelle Seite löschen

Wählen Sie Utility \rightarrow Tool \rightarrow ArbMng \rightarrow User \rightarrow OK. Wählen Sie Delete Page, die Arbiträrwelle der aktuellen Seite wird gelöscht.

Willkürliche Welle des Benutzers, Alle löschen

Wählen Sie Utility \rightarrow Tool \rightarrow ArbMng \rightarrow User \rightarrow OK, wählen Sie Delete All, die Arbiträrwelle im aktuellen Ordner wird gelöscht.

Willkürliche Welle des Benutzers, Export

Wählen Sie Utility \rightarrow Tool \rightarrow ArbMng \rightarrow User \rightarrow OK, Wählen Sie in der Liste "Andere" die Arbiträrwelle, die exportiert werden soll, z.B. "ALT_03.bsv", Wählen Sie Export, die Arbiträrwelle wird auf ein externes Speichergerät

exportiert.

Willkürliche Welle des Benutzers, Alle exportieren

Wählen Sie die Utility → Tool → ArbMng → Internal → OK, Wählen Sie Export ALL, wird die beliebige Welle im aktuellen Ordner auf das externe Speichermedium exportiert.

Externe Arbiträrwelle, Import

Wählen Sie Utility \rightarrow Tool \rightarrow ArbMng \rightarrow External \rightarrow OK, wählen Sie ein Arbitrary-Wave-Verzeichnis, drücken Sie den Drehknopf, öffnen Sie die Arbitrary-Wave-Liste, Liste, um die zu importierende Arbitrary-Wave auszuwählen, z.B. "ABA_1_2.bsv", wählen Sie Import, die Arbitrary-Wave wird in diesen Arbitrary-Wave-Manager im Benutzerverzeichnis importiert.

Externe Arbiträrwelle, Aktuelle Seite importieren

Wählen Sie Utility → Tool → ArbMng → External →OK, wählen Sie ein Arbiträrwellenverzeichnis, drücken Sie den Drehknopf, öffnen Sie die Arbiträrwellenliste, wählen Sie Import Page, die Arbiträrwelle der aktuellen Seite wird in diesen Arbiträrwellen-Manager im Benutzerverzeichnis importiert.

Externe Arbiträrwelle, Alle importieren

Wählen Sie Utility→Tool → ArbMng→ External → OK, wählen Sie ein Arbiträrwellenverzeichnis, drücken Sie den Drehknopf, öffnen Sie die Arbiträrwellenliste, wählen Sie Import All, die gesamte Arbiträrwelle im aktuellen Ordner wird in diesen Arbiträrwellen-Manager im Benutzerverzeichnis importiert.

|--|

Menü Funktion	Funktion Unter-Menü	Einstellung	Beschreibung
	Start Phase	Sync, Unabhängig	
	Sprache	Englisch, Chinesisch	
		(vereinfacht), Deutsch	
	Piep	AUS/EIN	
	Digitales Trennzeichen	Komma, Leerzeichen,	
		keine	
	Hintergrundbeleuchtung	10%,30%,50%,70%,	
		90%,100%	
	Bildschirmschoner	AUS, 1 Minute, 5	
		Minuten, 15 Minuten, 30	
		Minuten, 1 Stunde	
	Standardeinstellung		Wiederherstellen der
			Werkseinstellungen
	Hilfe		Hilfe Beschreibung
	Über		Informationen über den Namen
			des Modells, die Version und
			die Website des Unternehmens
	Upgrade		Verbinden mit dem oberen
			Computer für das Upgrade.

Wählen Sie die Taste Utility \rightarrow System, um die Systemeinstellungen aufzurufen.

Hinweise: Aufgrund des Systemauswahlmenüs System gibt es zwei Seiten, Sie müssen die Taste Next drücken, um die Seite zu wechseln.

1. Start Phase

Wählen Sie PhaseSync auf "Unabhängig" oder "Sync".

Unabhängig: Die Ausgangsphasen von CH1 und CH2 sind nicht miteinander verbunden;

Synchronisieren: Die Startphase der Ausgabe von CH1 und CH2 wird synchronisiert.

2. Sprache

Drücken Sie Language, um die Systemsprache einzustellen.

3. Piep

Legen Sie fest, ob beim Drücken der Taste ein Signalton ertönen soll. Drücken Sie auf Beep, um EIN oder AUS zu wählen.

4. Digitales Trennzeichen

Legen Sie das Trennzeichen für den numerischen Wert zwischen den Parametern des Kanals fest. Drücken Sie NumFormat, um Komma, Leerzeichen oder keine zu wählen.

5. Hintergrundbeleuchtung

Stellen Sie die Helligkeit der Hintergrundbeleuchtung des Bildschirms ein. Drücken Sie BackLight, um 10%, 30%, 50%, 70%, 90% oder 100% auszuwählen.

6. Bildschirmschoner

Drücken Sie <u>ScrnSvr</u>, um OFF, 1 Minute, 5 Minuten, 15 Minuten, 30 Minuten oder 1 Stunde zu wählen. Wenn Sie keine beliebige Taste drücken, wechselt das Gerät in den Bildschirmschoner als Einstellungszeit. Wenn <u>Mode</u> blinkt, drücken Sie eine beliebige Taste, um den Zustand wiederherzustellen.

7. Standardeinstellung

Stellen Sie die Werkseinstellungen wieder her.

8. Hilfe

Das eingebaute Hilfesystem bietet Hilfetexte für die Tasten oder Menüs im Hauptmenü. Das Hilfethema kann auch Hilfetext enthalten. Drücken Sie eine beliebige Softtaste oder Taste lange, um die Hilfeinformationen zu prüfen, z.B. drücken Sie die Taste Wave, um sie zu prüfen. Drücken Sie eine beliebige Taste oder den Drehknopf, um die Hilfe zu verlassen.

9. Über

Drücken Sie auf About, um den Namen des Modells, Versionsinformationen und die Website des Unternehmens zu überprüfen.

10. Upgrade

Das Gerät unterstützt den Anschluss an den Computer, um ein Upgrade durchzuführen. Die einzelnen Schritte sind wie folgt:

- a. Verbinden mit dem Computer über USB;
- b. Halten Sie den **Utility**-Knopf gedrückt, um die Stromversorgung der Signalquelle einzuschalten, und lassen Sie dann den Knopf los;
- c. Verwenden Sie das Schreibprogramm, um die Firmware in die Signalquelle zu schreiben und starten Sie dann das Gerät neu.

Kapitel 4 Erweiterte

In diesem Kapitel wird die Modulation von AM, PM, FM, ASK, FSK, PSK und PWM vorgestellt. Drücken Sie die Mode-Taste, um in den Modulationsmodus zu gelangen und drücken Sie sie erneut, um ihn zu verlassen.

4.1 Modulationswelle Ausgang

4.1.1 Amplitudenmodulation (AM)

Im AM-Modus besteht die modulierte Welle aus der Trägerwelle und der Modulationswelle. Die Amplitude der Trägerwelle wird mit der Amplitude der Modulationswelle verändert. Die Modulationsmodi der beiden Kanäle sind unabhängig voneinander. Der Benutzer kann für die beiden Kanäle den gleichen oder einen anderen Modulationsmodus einstellen.

AM-Modulation auswählen

Drücken Sie Mode→Shape→AM, um den AM-Modus zu aktivieren. Das Gerät gibt die modulierte Wellenform entsprechend der aktuellen Modulationswelle und der Trägerwelle aus.

Trägerwelle auswählen

Die Trägerwelle kann eine Sinuswelle, Rechteckwelle, Rampenwelle oder Arbiträrwelle sein. Die Standardeinstellung ist Sinuswelle. Nachdem Sie den AM-Modus ausgewählt haben, drücken Sie die Taste Wave, um die Schnittstelle für die Trägerwelle aufzurufen.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Freq Amp Offset	1.000,000, 100 mVpp 0 mV	00 kHz	₽		
Phase	0.00 °		/		/
Sine	Square	Pulse J	Ramp	Arb N	Page Down

Frequenz für Trägerwelle einstellen

Der Frequenzbereich der Trägerwelle kann unterschiedlich eingestellt werden. Die Standardfrequenz der Trägerwelle ist 1 kHz. Die Frequenz der einzelnen Trägerwellen können Sie in der folgenden Tabelle nachschlagen.

	Frequenz					
Trägerwelle		UTG1042X	UTG1022X/-PA			
	Mindestwert	Maximaler Wert	Mindestwert	Maximaler Wert		
Sinuswelle	1µHz	40 MHz	1µHz	20 MHz		
Rechteckige Welle	1µHz	20 MHz	1µHz	10 MHz		
Rampe Welle	1µHz	1 MHz	1µHz	400 kHz		
Impulswelle	1µHz	20 MHz	1µHz	10 MHz		
Beliebige Welle	1µHz	10 MHz	1µHz	5 MHz		

Wenn Sie die Frequenz der Trägerwelle einstellen möchten, wählen Sie zunächst die Trägerwelle aus und stellen dann mit dem Multifunktionsdrehknopf oder dem Softkey ModFreq die Frequenz ein. Verwenden Sie die numerische Tastatur zur Eingabe der Zahl und wählen Sie den Softkey Einheit, um die Einstellung abzuschließen.

Modulationswelle auswählen

Die Modulationsquelle dieses Instruments stammt aus dem internen Speicher. Sie können zwischen Sinuswelle, Rechteckwelle, steigender Rampenwelle, fallender Rampenwelle, Arbiträrwelle und Rauschwelle wählen. Die Standardeinstellung ist Sinuswelle. Wenn der AM-Modus aktiviert ist, ist die Standardmodulationswelle eine Sinuswelle. Sie kann mit dem Multifunktionsdrehknopf geändert werden oder Sie drücken im AM-Modus die Taste ModWave.

- Rechteckige Welle: Das Tastverhältnis beträgt 50%.
- Steigende Rampenwelle: Die Symmetrie beträgt 100%.
- Fallende Rampenwelle: Die Symmetrie beträgt 0%.
- Arbiträrwelle: Die Länge der Arbiträrwelle wird durch die Methode der automatischen Punktauswahl auf 4 kpts begrenzt, wenn die Arbiträrwelle die Modulationswelle ist.
- Rauschwelle: Weißes Gauß-Rauschen

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
ModWave ModFreq Depth	Sine 100.000 H 100.00 %	z		MM	
Sine	Square	UpRamp	DnRamp	Arb	Noise

Modulationsfrequenz einstellen

Der Frequenzbereich beträgt 2 mHz~1 MHz (die Standardeinstellung ist 100 Hz). Wenn der AM-Modus aktiviert ist, ist die Standardfrequenz der Modulationswelle 100 Hz. Sie kann mit dem Multifunktionsdrehknopf geändert werden, oder drücken Sie den Softkey ModFreq, und verwenden Sie dann die numerische Tastatur, um eine Zahl einzugeben und wählen Sie den Softkey Einheit, um die Einstellung im AM-Modus abzuschließen.

Modulationstiefe einstellen

Die Modulationstiefe gibt die Änderung der Amplitude an, die Sie in Prozent ausdrücken können. Der Bereich der AM-Modulationstiefe kann zwischen 0%~120% eingestellt werden, die Standardeinstellung ist 100%.

- Wenn die Modulationstiefe 0% beträgt, wird eine konstante Amplitude ausgegeben (die Hälfte der Amplitude der Trägerwelle).
- Wenn die Modulationstiefe 100% beträgt, ändert sich die Ausgangsamplitude mit der Modulationswellenform.
- Wenn die Modulationstiefe größer als 100% ist, wird die Ausgangsamplitude des Geräts nicht größer als 10 Vpp sein (bei einer Last von 50 Ω).
- Sie kann mit dem Multifunktionsdrehknopf geändert werden oder Sie drücken den Softkey ModDepth und geben dann über die numerische Tastatur eine Zahl ein und wählen den Softkey Einheit, um die Einstellung im AM-Modus abzuschließen.

Umfassendes Beispiel

Stellen Sie im AM-Modus ein internes Sinussignal von 200 Hz als Modulationssignal ein, ein weiteres Rechtecksignal mit einer Frequenz von 10 kHz, einer Amplitude von 200 mVpp, einem Tastverhältnis von 45% als Trägerwelle und setzen Sie die Modulationstiefe auf 80%.

1) Aktivieren des AM-Modus

Drücken Sie Mode \rightarrow Shape \rightarrow AM, um den AM-Modus einzuschalten.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
ModWave ModFreq Depth	Sine 100.000 H 100.00 %	İz		J~~~	
ModWave	ModFreq	Depth	Return		

2) Parameter für Modulationssignal einstellen

Drücken Sie ausgehend von Schritt 1 den Softkey ModFreq und verwenden Sie die numerische Tastatur zur Eingabe von 200 und wählen Sie dann die Einheit des Parameters Hz.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
ModWave ModFreq Depth	Sine 200.000 H 100.00 %	iz	A A	A	Ą
ModWave	ModFreq	Depth	Return		

3) Welle und Parameter für Trägerwellensignal einstellen

Drücken Sie die Taste Wave, um die Trägerwellenschnittstelle aufzurufen, und wählen Sie Rechteckwelle als Trägerwelle aus (die Standardeinstellung ist Sinuswelle).

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Freq Amp Offset Phase Duty	1.000,000, 100 mVpp 0 mV 0.00 ° 50.000 %	,00 kHz	A		
			Ŧ		_
Freq	Атр	Offset	Phase	Duty	Return

Drücken Sie die Taste Freq, um die Frequenz einzustellen, verwenden Sie die numerische Tastatur zur Eingabe von 1 und wählen Sie dann die Einheit des Parameters kHz;

Drücken Sie den Softkey Amp, um die Amplitude einzustellen, verwenden Sie die numerische Tastatur zur Eingabe von 200 und wählen Sie dann als Einheit des Parameters mVpp;

Drücken Sie den Softkey Duty, um die Einschaltdauer einzustellen. Verwenden Sie die numerische Tastatur zur Eingabe von 45 und wählen Sie dann die Einheit des Parameters in %.

Wie in der folgenden Abbildung gezeigt.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Freq Amp Offset Phase	1.000,000 200 mVpp 0 mV 0.00 °	,00 kHz		_	
Duty	4 5.000 %				_
Freq	Атр	Offset	Phase	Duty	Return

4) Modulationstiefe einstellen

Nachdem die Parametereinstellung der Trägerwelle abgeschlossen ist, drücken Sie Mode→Shape→AM, um in den AM-Modus zu gelangen,

Drücken Sie den Softkey ModDepth und verwenden Sie die numerische Tastatur zur Eingabe von 80 und wählen Sie dann die Einheit des Parameters %.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
ModWave ModFreq Depth	Sine 200.000 H 20.00 %	z			
ModWave	ModFreq	Depth	Return		

5) Aktivieren der Kanalausgabe

Drücken Sie die Taste CH1. Wenn die Kontrollleuchte leuchtet, bedeutet dies, dass der Kanalausgang aktiviert ist.

Um die Form der AM mit einem Oszilloskop zu betrachten, wie in der folgenden Abbildung gezeigt.

4.1.2 Frequenzmodulation (FM)

Im FM-Modus besteht die modulierte Welle aus der Trägerwelle und der Modulationswelle. Die Frequenz der Trägerwelle wird mit der Amplitude der Modulationswelle verändert.

Drücken Sie Mode→Shape→FM, um den FM-Modus zu aktivieren. Das Gerät gibt die modulierte Wellenform entsprechend der aktuellen Modulationswelle und der Trägerwelle aus.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
ModWave ModFreq FreqDev	Sine 100.000 H 1.000,000,	iz 00 kHz			
ModWave	ModFreq	FreqDev	Return		

Trägerwelle auswählen

Die Trägerwelle kann eine Sinuswelle, Rechteckwelle, Rampenwelle oder Arbiträrwelle sein. Die Standardeinstellung ist Sinuswelle. Nachdem Sie den FM-Modus ausgewählt haben, drücken Sie die Taste Wave, um die Schnittstelle für die Trägerwelle aufzurufen.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Freq Amp Offset Phase	1.000,000, 100 mVpp 0 mV 0.00 °	,00 kHz	€ +		
					/
Sine	Square	Pulse J	Ramp	Arb	Page Down

Frequenz für Trägerwelle einstellen

Siehe Frequenz für Trägerwelle einstellen im AM-Modus.

Modulationswelle auswählen

Die Modulationsquelle dieses Instruments stammt aus dem internen Speicher. Sie können zwischen Sinuswelle, Rechteckwelle, steigender Rampenwelle, fallender Rampenwelle, Arbiträrwelle und Rauschwelle wählen. Die Standardeinstellung ist Sinuswelle. Wenn der FM-Modus aktiviert ist, ist die Standardmodulationswelle eine Sinuswelle. Sie kann mit dem Multifunktionsdrehknopf geändert werden oder drücken Sie ModWave im AM-Modus.

- Rechteckige Welle: Das Tastverhältnis beträgt 50%.
- Steigende Rampenwelle: Die Symmetrie beträgt 100%.
- Fallende Rampenwelle: Die Symmetrie beträgt 0%.

- Arbiträrwelle: Die Länge der Arbiträrwelle wird durch die Methode der automatischen Punktauswahl auf 4 kpts begrenzt, wenn die Arbiträrwelle die Modulationswelle ist.
- Rauschwelle: Weißes Gauß-Rauschen

Modulationsfrequenz einstellen

Der Frequenzbereich beträgt 2 mHz~1 MHz (die Standardeinstellung ist 100 Hz). Wenn der FM-Modus aktiviert ist, ist die Standardfrequenz der Modulationswelle 100 Hz. Sie kann mit dem Multifunktionsdrehknopf geändert werden oder Sie drücken den Softkey ModFreq und geben dann über die numerische Tastatur eine Zahl ein und wählen den Softkey Einheit, um die Einstellung im FM-Modus abzuschließen.

Frequenzabweichung einstellen

Die Frequenzabweichung zeigt die Frequenzabweichung der frequenzmodulierten Welle im Verhältnis zur Frequenz der Trägerwelle an. Der Bereich der FM-Abweichung kann vom minimalen DC bis zur Hälfte der aktuell maximalen Trägerwellenfrequenz eingestellt werden. Die Standardfrequenzabweichung beträgt 1 kHz. Sie kann mit dem Softkey ModFreq im FM-Modus geändert werden.

- Frequenzabweichung ≤ Trägerwellenfrequenz. Wenn die Frequenzabweichung größer ist als die Trägerwellenfrequenz, begrenzt das Gerät die Abweichung automatisch auf das Maximum, das die aktuelle Trägerfrequenz zulässt.
- Die Summe der Frequenzabweichung und der Trägerwellenfrequenz ≤ dem Maximum der aktuellen Trägerfrequenz. Wenn der Wert der Frequenzabweichung ungültig ist, begrenzt das Gerät die Abweichung automatisch auf das Maximum, das die aktuelle Trägerfrequenz zulässt.

Umfassendes Beispiel

Stellen Sie im FM-Modus ein internes 2-kHz-Rechtecksignal als Modulationssignal ein, ein weiteres Sinussignal mit einer Frequenz von 10 kHz und einer Amplitude von 100 mVpp als Trägerwelle und stellen Sie schließlich die Frequenzabweichung auf 5 kHz ein, wobei Sie wie folgt vorgehen.

1) Aktivieren des FM-Modus

Drücken Sie Mode \rightarrow Shape \rightarrow FM, um den FM-Modus einzuschalten.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
ModWave ModFreq FreqDev	Sine 100.000 H 1.000,000	łz ,00 kHz			
Sine	Square	UpRamp	DnRamp	Arb	Noise

2) Parameter und Welle für Modulationssignal einstellen

Drücken Sie ausgehend von Schritt 1 den Softkey ModWave, um die Rechteckwelle als Modulationswelle auszuwählen, drücken Sie den Softkey ModFreq und verwenden Sie die numerische Tastatur zur Eingabe von 2 und wählen Sie dann die Einheit des Parameters kHz.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
ModWave ModFreq FreqDev	Square 2.000,000 1.000,000,	kHz 00 kHz			V
ModWave	ModFreq	FreqDev	Return		

3) Welle und Parameter für Trägerwellensignal einstellen

Drücken Sie die Taste Wave, um die Trägerwellenschnittstelle aufzurufen, und wählen Sie Sinuswelle als Trägerwelle aus (die Standardeinstellung ist Sinuswelle).

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Freq Amp Offset Phase	10.000,000 100 mVpp 0 mV 0.00 °	0,0 kHz			H
Freq	Атр	Offset	Phase	Return	

Drücken Sie den Softkey Freq, um die Frequenz einzustellen, geben Sie mit der numerischen Tastatur 10

ein und wählen Sie dann als Einheit des Parameters kHz;

Drücken Sie den Softkey Amp, um die Amplitude einzustellen, verwenden Sie die numerische Tastatur, um

100 einzugeben und wählen Sie dann als Einheit des Parameters mV.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Freq Атр Offset Phase	10.000,000 100 mVpp 0 mV 0.00 °	0,0 kHz	₽		H
Freq	Атр	Offset	Phase	Return	

4) Frequenzabweichung einstellen

Nachdem Sie die Parameter für die Trägerwelle eingestellt haben, drücken Sie Mode→Shape→FM, um den FM-Modus einzustellen.

Drücken Sie den Softkey FreqDev und verwenden Sie die numerische Tastatur zur Eingabe von 5 und wählen Sie dann die Einheit des Parameters kHz.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
ModWave ModFreq FreqDev	Square 2.000,000 5.000,000	kHz ,00 kHz			
ModWave	ModFreq	FreqDev	Return		

5) Aktivieren der Kanalausgabe

Drücken Sie die Taste CH1. Wenn die Kontrollleuchte leuchtet, bedeutet dies, dass der Kanalausgang aktiviert ist.

CH1	Limit 50Ω	FM	CH2	Limit 50Ω	OFF
ModWave ModFreq FreqDev	Square 2.000,000 5.000,000	kHz ,00 kHz			
ModWave	ModFreq	FreqDev	Return		

Um die Form der FM mit einem Oszilloskop zu betrachten, wie in der folgenden Abbildung gezeigt.

4.1.3 Phasenmodulation (PM)

Im PM-Modus besteht die modulierte Welle aus der Trägerwelle und der Modulationswelle. Die Phase der Trägerwelle wird mit der Amplitude der Modulationswelle verändert.

Drücken Sie Mode→Shape →PM, um den PM-Modus zu aktivieren. Das Gerät gibt die modulierte Wellenform entsprechend der aktuellen Modulationswelle und der Trägerwelle aus.

Trägerwelle auswählen

Die Trägerwelle kann eine Sinuswelle, eine Rechteckwelle, eine Rampenwelle oder eine Arbiträrwelle sein. Die Standardeinstellung ist Sinuswelle. Nachdem Sie den PM-Modus ausgewählt haben, drücken Sie die Taste Wave, um die Schnittstelle für die Trägerwelle aufzurufen.

Frequenz für Trägerwelle einstellen

Siehe Frequenz für Trägerwelle einstellen im AM-Modus.

Modulationswelle auswählen

Die Modulationsquelle dieses Instruments stammt aus dem internen Speicher. Sie können zwischen Sinuswelle, Rechteckwelle, steigender Rampenwelle, fallender Rampenwelle, Arbiträrwelle und Rauschwelle wählen. Die Standardeinstellung ist Sinuswelle. Wenn der PM-Modus aktiviert ist, ist die Standardmodulationswelle eine Sinuswelle. Sie kann mit dem Multifunktionsdrehknopf geändert werden oder drücken Sie ModWave im AM-Modus.

- Rechteckige Welle: Das Tastverhältnis beträgt 50%.
- Steigende Rampenwelle: Die Symmetrie beträgt 100%.
- Fallende Rampenwelle: Die Symmetrie beträgt 0%.
- Arbiträrwelle: Die Länge der Arbiträrwelle wird durch die Methode der automatischen Punktauswahl auf 4 kpts begrenzt, wenn die Arbiträrwelle die Modulationswelle ist.
- Rauschwelle: Weißes Gauß-Rauschen

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
ModWave ModFreq PhaseDev	Sine 100.000 H 180.00 °	İz			
Sine	Square	UpRamp	DnRamp	Arb	Noise

Modulationsfrequenz einstellen

Der Frequenzbereich beträgt 2 mHz~1 MHz (die Standardeinstellung ist 100 Hz). Wenn der PM-Modus aktiviert ist, ist die Standardfrequenz der Modulationswelle 100 Hz. Sie kann mit dem Multifunktionsdrehknopf geändert werden oder Sie drücken den Softkey ModFreq und verwenden dann die numerische Tastatur, um eine Zahl einzugeben und wählen den Softkey Einheit, um die Einstellung im PM-Modus abzuschließen.

Phasenabweichung einstellen

Die Phasenabweichung zeigt die Phasenabweichung der phasenmodulierten Welle relativ zur Phase der Trägerwelle an. Der Bereich der PM-Abweichung kann auf 0° - 360° eingestellt werden. Die Standard-Phasenabweichung beträgt 180°. Sie kann mit dem Softkey PhaseDev und den Pfeiltasten im PM-Modus geändert werden.

Umfassendes Beispiel

Im PM-Modus stellen Sie ein internes 200-Hz-Sinussignal als Modulationssignal ein, ein weiteres Sinussignal mit einer Frequenz von 900 Hz und einer Amplitude von 100 mVpp als Trägersignal und setzen die Phasenabweichung schließlich auf 200°.

1) Aktivieren des PM-Modus

Drücken Sie den Mode \rightarrow Shape \rightarrow PM, um den PM-Modus einzuschalten.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
ModWave ModFreq PhaseDev	Sine 100.000 H 180.00 °	İz			
ModWave	ModFreq	PhaseDev	Return		

2) Parameter für Modulationssignal einstellen

Drücken Sie ausgehend von Schritt 1 die Softtaste ModWave und verwenden Sie die numerische Tastatur zur Eingabe von 200 und wählen Sie dann die Einheit des Parameters Hz.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
ModWave ModFreq PhaseDev	Sine 200.000 H 180.00 °	lz			
ModWave	ModFreq	PhaseDev	Return		

3) Welle und Parameter für Trägerwellensignal einstellen

Drücken Sie die Taste Wave, um die Trägerwellenschnittstelle aufzurufen, und wählen Sie Sinuswelle als Trägerwelle aus (die Standardeinstellung ist Sinuswelle).

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Freq Amp Offset	10.000,000 100 mVpp 0 mV	0,0 kHz			
Phase	0.00 °				/
Freq	Атр	Offset	Phase	Return	

Drücken Sie den Softkey Freq, um die Frequenz einzustellen. Verwenden Sie die numerische Tastatur, um 900 einzugeben und wählen Sie dann die Einheit des Parameters Hz;

Drücken Sie den Softkey Amp, um die Amplitude einzustellen, verwenden Sie die numerische Tastatur, um 100 einzugeben und wählen Sie dann als Einheit des Parameters mVpp. Wie in der folgenden Abbildung gezeigt.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Freq Amp Offset Phase	900.000,0 100 mVpp 0 mV 0.00 °	00 Hz)
Freq	Атр	Offset	Phase	Return	

4) Phasenabweichung einstellen

Nachdem die Einstellung der Parameter für die Trägerwelle abgeschlossen ist, drücken Sie Mode→Shape →PM, um in den PM-Modus zu gelangen,

Drücken Sie den Softkey PhaseDev und verwenden Sie die numerische Tastatur, um 200 einzugeben und wählen Sie dann die Einheit des Parameters ⁶.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
ModWave ModFreq PhaseDev	Sine 200.000 H 200.00 °	lz		\sim	
ModWave	ModFreq	PhaseDev	Return		

5) Aktivieren der Kanalausgabe

Drücken Sie die Taste CH1. Wenn die Kontrollleuchte leuchtet, bedeutet dies, dass der Kanalausgang aktiviert ist.

CH1	Limit 50Ω	PM	CH2	Limit 50Ω	OFF
ModWave ModFreq PhaseDev	Sine 200.000 H 200.00 °	İz		\cap	
ModWave	ModFreq	PhaseDev	Return		

Um die Form des PM mit einem Oszilloskop zu betrachten, wie in der folgenden Abbildung gezeigt.

4.1.4 Amplitudenumtastung (ASK)

ASK ist eine digitale Amplitudenmodulation, die digitale Signale "0" und "1" durch Änderung der Amplitude des Trägersignals ausdrückt. Je nach der Logik des Modulationssignals werden die Trägersignale mit unterschiedlicher Amplitude ausgegeben. Die Modulationsmodi der beiden Kanäle sind unabhängig voneinander. Der Benutzer kann den gleichen oder einen anderen Modulationsmodus für die beiden Kanäle einstellen.

Wählen Sie ASK

Drücken Sie Mode \rightarrow Shape \rightarrow ASK, um den ASK-Modus einzuschalten. Der Wellenformgenerator gibt die modulierte Wellenform entsprechend der aktuellen ASK-Rate und der Trägerwelle aus.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Source Rate	Internal 100.000 H	z			W.
Source	Rate	Return			

Trägerwelle auswählen

Die Trägerwelle kann eine Sinuswelle, Rechteckwelle, Rampenwelle oder Arbiträrwelle (außer DC) sein. Die Standardeinstellung ist Sinuswelle. Nachdem Sie den ASK-Modus ausgewählt haben, drücken Sie die Taste Wave, um die Trägerwellenschnittstelle aufzurufen.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Freq	1.000,000	,00 kHz	6		
Атр	100 mVpp			\frown	
Offset	0 mV		/	\setminus	
Phase	0.00 °		∎ ≭ ∕	\rightarrow	
			· ·	\backslash	
				\sim	
				·	
Sine	Square	Pulse	Ramp	Arb	Page
\sim			\sim	\sim	Down

Frequenz für Trägerwelle einstellen

Siehe Frequenz für Trägerwelle einstellen im AM-Modus

Modulationsquelle einstellen

Die Modulationsquelle dieses Geräts kann intern oder extern gewählt werden. Wenn der ASK-Modus aktiviert ist, ist die Standardmodulationsquelle intern. Sie kann mit dem Multifunktionsdrehknopf oder durch Drücken des Softkeys ModSrc→External geändert werden.

1) Interne Quelle

Wenn die Modulationsquelle intern ist, ist die interne Modulationswelle ein Rechtecksinus mit einem Tastverhältnis von 50% (nicht einstellbar). Die Frequenz der Bewegung zwischen der Trägerfrequenz und der Sprungfrequenz kann durch die Einstellung der FSK-Rate festgelegt werden.

2) Externe Quelle

Wenn die Modulationsquelle extern ist, wird die Trägerwelle durch die externe Welle moduliert. Die ASK-Amplitudenausgabe wird durch den logischen Pegel des externen digitalen Modulationsanschlusses (FSK /CNT/Sync-Anschluss) gesteuert. So wird beispielsweise die Frequenz der Trägerwelle ausgegeben, wenn der logische Pegel des externen Eingangs niedrig ist; die Sprungfrequenz wird ausgegeben, wenn der logische Pegel des externen Eingangs hoch ist.

ASK-Rate einstellen

Wenn der ASK-Modus aktiviert ist, können Sie die ASK-Rate einstellen (der Bereich ist 2 mHz~100 kHz). Die Standardeinstellung ist 100 Hz. Sie kann mit dem Multifunktionsdrehknopf und den Pfeiltasten geändert werden oder Sie drücken den Softkey Rate und geben dann über die numerische Tastatur eine Zahl ein und wählen den Softkey Einheit, um die Einstellung abzuschließen.

Umfassendes Beispiel

Stellen Sie im ASK-Modus eine interne Sinuswelle mit 2 kHz und 1 Vpp als Trägersignal ein. Stellen Sie die Frequenz und Amplitude der Trägerwelle so ein, dass sie mit einer Frequenz von 200 Hz umschaltet, und gehen Sie dabei wie folgt vor.

1) Aktivieren des ASK-Modus

Drücken Sie Mode \rightarrow Shape \rightarrow ASK, um den ASK-Modus einzuschalten.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Source Rate	Internal 100.000 H	z			AA.
Source	Rate	Return			

2) Modulationsrate einstellen

Drücken Sie den Softkey Rate und verwenden Sie die numerische Tastatur, um 200 einzugeben und wählen Sie dann die Einheit des Parameters auf Hz.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF	
Source Rate	Internal 200.000 H	Iz				
Source	Rate	Return				

3) Trägerwellensignal einstellen

Drücken Sie die Taste Wave, um das Trägerwellen-Interface aufzurufen, und wählen Sie Sinuswelle als Trägerwelle aus (die Standardeinstellung ist Sinuswelle).

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Freq Amp Offset	10.000,000 100 mVpp 0 mV	0,0 kHz			
Phase	0.00 °		/		/
Freq	Атр	Offset	Phase	Return	
Drücken Sie den Softkey Freq, um die Frequenz einzustellen, geben Sie mit der numerischen Tastatur 2 ein und wählen Sie dann die Einheit des Parameters kHz;

Drücken Sie den Softkey Amp, um die Amplitude einzustellen, verwenden Sie die numerische Tastatur, um 1 einzugeben und wählen Sie dann die Einheit des Parameters auf Vpp.

4) Aktivieren der Kanalausgabe

Drücken Sie die Taste CH1. Wenn die Kontrollleuchte leuchtet, bedeutet dies, dass der Kanalausgang aktiviert ist.

CH1	Limit 50Ω	ASK	CH2	Limit 50Ω	OFF
Freq Amp Offset Phase	2.000,000 1.000 Vpp 0 mV 0.00 °	,00 kHz)
Freq	Атр	Offset	Phase	Return	

Um die Form des ASK mit einem Oszilloskop zu betrachten, wie in der folgenden Abbildung gezeigt.

4.1.5 Frequenzumtastung (FSK)

Im FSK-Modus kann es die Umschaltrate zwischen der Frequenz der Trägerwelle und der Sprungfrequenz für das Gerät einstellen.

FSK auswählen

Drücken Sie Mode→Shape→FSK, um den FSK-Modus zu aktivieren. Das Gerät gibt die modulierte Wellenform entsprechend der aktuellen Einstellung aus.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Source CarrFreq HopFreq Rate	Internal 1.000,000, 10.000,000 100.000 H	00 kHz),0 kHz z			
Source	CarrFreq	HopFreq	Rate	Return	

Trägerwelle auswählen

Die Trägerwelle kann eine Sinuswelle, eine Rechteckwelle, eine Rampenwelle oder eine Arbiträrwelle sein. Die Standardeinstellung ist Sinuswelle. Nachdem Sie den FSK-Modus ausgewählt haben, drücken Sie die Taste Wave, um die Schnittstelle für die Trägerwelle aufzurufen.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Freq	1.000,000, 100 mVpp	,00 kHz	A	~	
Offset	0 mV			$\langle \ \rangle$	
Phase	0.00 °		*		
				\sim	
Sine	Square	Pulse J	Ramp	Arb ~~	Page Down

Frequenz für Trägerwelle einstellen

Siehe <u>Frequenz für Trägerwelle einstellen</u> im AM-Modus.

Modulationsquelle einstellen

Die Modulationsquelle dieses Geräts kann intern oder extern gewählt werden. Wenn der FSK-Modus aktiviert ist, ist die Standardmodulationsquelle intern. Sie kann mit dem Multifunktionsdrehknopf oder der Softtaste ModSrc→External geändert werden.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Source CarrFreq HopFreq	External 1.000,000, 10.000,000	00 kHz 0,0 kHz			
Source	CarrFreq	HopFreq	Return		

1) Interne Quelle

Wenn die Modulationsquelle intern ist, ist die interne Modulationswelle ein Rechtecksinus mit einem Tastverhältnis von 50% (nicht einstellbar). Die Frequenz der Bewegung zwischen der Trägerfrequenz und der Sprungfrequenz kann durch die Einstellung der FSK-Rate festgelegt werden.

2) Externe Quelle

Wenn die Modulationsquelle extern ist, wird die Trägerwelle durch die externe Welle moduliert. Die ASK-Amplitudenausgabe wird durch den logischen Pegel des externen digitalen Modulationsanschlusses (FSK/CNT/Sync-Anschluss) gesteuert. Zum Beispiel gibt es die Frequenz der Trägerwelle aus, wenn der logische Pegel des externen Eingangs niedrig ist; es gibt die Sprungfrequenz aus, wenn der logische Pegel des externen Eingangs hoch ist.

Hopping-Frequenz einstellen

Wenn der FSK-Modus aktiviert ist, beträgt die Standard-Sprungfrequenz 10 kHz. Sie kann mit dem Multifunktionsdrehknopf und den Pfeiltasten geändert werden, oder drücken Sie den Softkey HopFreq und geben Sie dann mit der numerischen Tastatur eine Zahl ein und wählen Sie den Softkey Einheit, um die Einstellung abzuschließen. Der Bereich der Sprungfrequenz hängt von der Trägerwelle ab. Die Frequenzeinstellung der Trägerwelle können Sie unter Frequenz für Trägerwelle einstellen im AM-Modus nachlesen.

FSK-Rate einstellen

Wenn die Modulationsquelle intern ist, können Sie die Frequenz der Bewegung zwischen der Frequenz der Trägerwelle und der Hopping-Frequenz einstellen. Wenn der FSK-Modus aktiviert ist, können Sie die FSK-Rate einstellen (der Bereich ist 2 mHz \sim 100 kHz). Die Standardeinstellung ist 100 Hz. Sie können sie mit dem Multifunktionsdrehknopf und den Pfeiltasten ändern oder den Softkey Rate drücken und dann mit der numerischen Tastatur eine Zahl eingeben und mit dem Softkey Einheit auswählen, um die Einstellung abzuschließen.

Umfassendes Beispiel

Stellen Sie im FSK-Modus eine interne Sinuswelle von 2 kHz, 1 Vpp als Trägersignal ein, stellen Sie die Sprungfrequenz auf 800 Hz ein und lassen Sie die Frequenz der Trägerwelle und der Sprungfrequenz mit einer Frequenz von 200 Hz wechseln, wobei Sie die folgenden Einstellungen vornehmen.

1) Aktivieren des FSK-Modus

Drücken Sie Mode \rightarrow Shape \rightarrow FSK, um den FSK-Modus einzuschalten.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Source CarrFreq HopFreq Rate	Internal 1.000,000, 10.000,000 100.000 H	00 kHz 0,0 kHz Iz			
Source	CarrFreq	HopFreq	Rate	Return	

2) Sprungfrequenz und Modulationsrate einstellen

Basierend auf Schritt 1 drücken Sie den Softkey HopFreq und verwenden die numerische Tastatur zur

Eingabe von 800 und wählen dann die Einheit des Parameters Hz.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Source CarrFreq HopFreq Rate	Internal 1.000,000, 800.000,00 100.000 H	00 kHz 00 Hz z			
Source	CarrFreq	HopFreq	Rate	Return	

3) Modulationsrate einstellen

Drücken Sie den Softkey Rate und verwenden Sie die numerische Tastatur zur Eingabe von 200 und wählen Sie dann die Einheit des Parameters Hz.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Source CarrFreq HopFreq Rate	Internal 1.000,000, 800.000,0 200.000 H	00 kHz 00 Hz Iz			
Source	CarrFreq	HopFreq	Rate	Return	

4) Trägerwellensignal einstellen

Drücken Sie die Taste Wave, um die Trägerwellenschnittstelle aufzurufen, und wählen Sie Sinuswelle als Trägerwelle aus (die Standardeinstellung ist Sinuswelle).

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Freq Amp Offset Phase	10.000,000 100 mVpp 0 mV 0.00 °	0,0 kHz			N
Freq	Атр	Offset	Phase	Return	

Drücken Sie den Softkey Freq, um die Frequenz einzustellen, geben Sie mit der numerischen Tastatur 2 ein und wählen Sie dann die Einheit des Parameters kHz;

Drücken Sie den Softkey Amp, um die Amplitude einzustellen, verwenden Sie die numerische Tastatur, um 1 einzugeben und wählen Sie dann die Einheit des Parameters auf Vpp.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Freq Amp Offset Phase	2.000,000 1.000 Vpp 0 mV 0.00 °	,00 kHz	₽		
Freq	Атр	Offset	Phase	Return	

5) Aktivieren der Kanalausgabe

Drücken Sie die Taste CH1. Wenn die Kontrollleuchte leuchtet, bedeutet dies, dass der Kanalausgang aktiviert ist.

CH1	Limit 50Ω	FSK	CH2	Limit 50Ω	OFF
Freq Amp Offset	2.000,000 1.000 Vpp 0 mV	,00 kHz			
Phase	0.00 °		/		/
Freq	Атр	Offset	Phase	Return	

Um die Form des FSK mit einem Oszilloskop zu betrachten, wie in der folgenden Abbildung gezeigt.

4.1.6 Phasenumtastung (PSK)

Im PSK-Modus kann der Funktions-/Arbiträr-Signal-Generator zwischen zwei voreingestellten Phasen (der Phase der Trägerwelle und der Modulationsphase) wechseln. Je nach dem logischen Pegel des Modulationssignals wird die Trägerfrequenz oder die Modulationsphase ausgegeben. Die Modulationsmodi der beiden Kanäle sind unabhängig voneinander. Der Benutzer kann den gleichen oder einen anderen Modulationsmodus für die beiden Kanäle einstellen.

PSK auswählen

Drücken Sie Mode → Shape → PSK, um den PSK-Modus zu aktivieren. Das Gerät gibt die modulierte Wellenform entsprechend der aktuellen Einstellung aus.

CH1	Limit 50Ω	PSK	CH2	Limit 50Ω	OFF
Source Rate Phase	Internal 100.000 H 180.00 °	İz			
Source	Rate	Phase	Return		

Trägerwelle auswählen

Die Trägerwelle kann eine Sinuswelle, Rechteckwelle, Rampenwelle oder Arbiträrwelle (außer DC) sein. Die Standardeinstellung ist Sinuswelle. Nachdem der PSK-Modus ausgewählt wurde, drücken Sie die Taste Wave, um die Trägerwellenschnittstelle aufzurufen.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Freq Amp Offset Phase	1.000,000, 100 mVpp 0 mV 0.00 °	,00 kHz	₽ *		
Sine	Square	Pulse J	Ramp	Arb ~~	Page Down

Frequenz für Trägerwelle einstellen

Siehe <u>Frequenz für Trägerwelle einstellen</u> im AM-Modus.

Modulationsquelle einstellen

Die Modulationsquelle dieses Geräts kann intern oder extern gewählt werden. Wenn der PSK-Modus aktiviert ist, ist die Standardmodulationsquelle intern. Sie kann mit dem Multifunktionsdrehknopf oder der Softtaste ModSrc→External geändert werden.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Source Rate Phase	Internal 200.000 H 180.00 °	z			
Source	Rate	Phase	Return		

1) Interne Quelle

Wenn die Modulationsquelle intern ist, ist die interne Modulationswelle ein Rechtecksinus mit einem Tastverhältnis von 50% (eingebaut und nicht einstellbar). Die Frequenz der Bewegung zwischen der Trägerphase und der Modulationsphase kann durch die Einstellung der PSK-Rate festgelegt werden.

2) Externe Quelle

Wenn die Modulationsquelle extern ist, wird die Option Rate in der Parameterliste ausgeblendet. Zu diesem Zeitpunkt wird die Trägerwelle durch die externe Welle moduliert. Die PSK-Phasenausgabe wird durch den logischen Pegel am externen digitalen Modulationsanschluss (FSK /CNT/Sync-Anschluss) gesteuert. So wird beispielsweise die Phase der Trägerwelle ausgegeben, wenn der logische Pegel des externen Eingangs niedrig ist, und die phasenverschobene Phase ausgegeben, wenn der logische Pegel des externen Eingangs hoch ist.

PSK-Rate einstellen

Wenn die Modulationsquelle intern ist, können Sie die Frequenz der Bewegung zwischen der Phase der Trägerwelle und der Modulationsphase einstellen. Wenn der PSK-Modus aktiviert ist, können Sie die PSK-Rate einstellen (der Bereich ist 2 mHz~100 kHz). Die Standardeinstellung ist 100 Hz. Sie können die Rate mit dem Multifunktionsdrehknopf und den Pfeiltasten ändern oder die Softtaste Rate drücken und dann mit der numerischen Tastatur eine Zahl eingeben und die Softtaste Einheit wählen, um die Einstellung abzuschließen.

Modulationsphase einstellen

Die Modulationsphase gibt die Phase der Welle an, die mit PSK moduliert wurde, und zwar relativ zur Phase der Trägerwelle. Der PSK-Bereich kann auf 0° - 360° eingestellt werden. Die Voreinstellung ist 180°. Sie können den Wert mit dem Multifunktionsdrehknopf und den Pfeiltasten ändern oder den Softkey PhaseDev drücken.

Umfassendes Beispiel

Im PSK-Modus stellen Sie eine interne 2 kHz, 2 Vpp Sinuswelle als Modulationssignal ein, stellen die Phase der Trägerwelle ein und die Modulationsphase bewegt sich zuletzt mit einer Frequenz von 1 kHz, die Einstellschritte wie folgt.

1) Aktivieren des PSK-Modus

Drücken Sie Mode \rightarrow Shape \rightarrow PSK, um den PSK-Modus einzuschalten.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Source Rate Phase	Internal 200.000 H 180.00 °	Iz			
Source	Rate	Phase	Return		

2) Modulationsrate einstellen

Drücken Sie den Softkey Rate und verwenden Sie die numerische Tastatur, um 500 einzugeben und wählen Sie dann die Einheit des Parameters auf Hz.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Source Rate Phase	Internal <mark>5</mark> 00.000 H 90.00 °	Iz			
Source	Rate	Phase	Return		

3) Phase einstellen

Drücken Sie den Softkey Phase und verwenden Sie die numerische Tastatur, um 180 einzugeben und wählen Sie dann die Einheit des Parameters .

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Source Rate Phase	Internal 500.000 H <u>1</u> 80.00 °	iz			
Source	Rate	Phase	Return		

4) Trägerwellensignal einstellen

Drücken Sie die Taste Wave, um die Trägerwellenschnittstelle aufzurufen, und wählen Sie Sinuswelle als Trägerwelle aus (die Standardeinstellung ist Sinuswelle).

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Freq Amp Offset Phase	10.000,000 100 mVpp 0 mV 0.00 °	0,0 kHz			H
Freq	Атр	Offset	Phase	Return	

Drücken Sie den Softkey Freq, um die Frequenz einzustellen, geben Sie mit der numerischen Tastatur 2 ein und wählen Sie dann die Einheit des Parameters kHz;

Drücken Sie den Softkey Amp, um die Amplitude einzustellen, verwenden Sie die numerische Tastatur, um 1 einzugeben und wählen Sie dann die Einheit des Parameters auf Vpp.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Freq Amp Offset Phase	2.000,000 1.000 Vpp 0 mV 0.00 °	,00 kHz	*		
Freq	Атр	Offset	Phase	Return	

5) Aktivieren der Kanalausgabe

Drücken Sie die Taste CH1. Wenn die Kontrollleuchte leuchtet, bedeutet dies, dass der Kanalausgang aktiviert ist.

CH1	Limit 50Ω	PSK	CH2	Limit 50Ω	OFF
Freq Amp Offset Phase	2.000,000 1.000 Vpp 0 mV 0.00 °	,00 kHz	*		
Freq	Атр	Offset	Phase	Return	

Um die Form des PSK durch ein Oszilloskop zu betrachten, wie in der folgenden Abbildung gezeigt.

4.1.7 Impulsbreitenmodulation (PWM)

Im PWM-Modus besteht die modulierte Welle aus der Trägerwelle und der Modulationswelle. Die Impulsbreite der Trägerwelle ändert sich mit der Amplitude der Modulationswelle. Die Modulationsmodi der beiden Kanäle sind unabhängig voneinander. Sie können den gleichen oder einen anderen Modulationsmodus für die beiden Kanäle einstellen.

Wählen Sie PWM

Drücken Sie Mode →Shape →PWM, um den PWM-Modus zu aktivieren. Das Gerät gibt dann die modulierte Wellenform entsprechend der aktuellen Einstellung aus.

Trägerwelle auswählen

Die Trägerwelle von PWM kann nur eine Pulswelle sein. Nachdem Sie PWM ausgewählt haben, drücken Sie die Taste Wave, um die Trägerwellenschnittstelle aufzurufen.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Freq Amp Offset Phase Duty Rise Fall	2.000,000 1.000 Vpp 0 mV 0.00 ° 50.000 % 15 ns 15 ns	,00 kHz		▶	
Sine	Square	Pulse	Ramp	Arb	Page Down

Frequenz für Trägerwelle einstellen

Siehe Frequenz für Trägerwelle einstellen im AM-Modus.

PWM-Rate einstellen

Wenn der PWM-Modus aktiviert ist, wird die Frequenz der Modulationswelle angezeigt (der Bereich ist 2 mHz~1 mHz). Die Standardeinstellung ist 100 Hz. Sie können die Frequenz mit dem Multifunktionsdrehknopf und den Pfeiltasten ändern oder die Softtaste Rate drücken und dann mit der numerischen Tastatur eine Zahl eingeben und die Softtaste Einheit auswählen, um die Einstellung abzuschließen.

Tastverhältnis einstellen

Duty Cycle Deviation zeigt die Abweichung der modulierten Welle vom aktuellen Duty Cycle der Trägerwelle an. Der Bereich des PWM-Tastverhältnisses kann auf 0% - 49,99% eingestellt werden, die Standardeinstellung ist 20%. Sie können den Wert mit dem Multifunktionsdrehknopf und den Pfeiltasten ändern oder die Taste DutyCycle drücken.

Hinweise

- Die Tastverhältnisabweichung gibt die Änderung des Tastverhältnisses der modulierten Welle im Vergleich zur ursprünglichen Pulswellenform an (ausgedrückt in %).
- Die Abweichung des Tastverhältnisses kann nicht größer sein als das Tastverhältnis der aktuellen Pulswelle.

- Die Summe der Tastverhältnisabweichung und des Tastverhältnisses der aktuellen Pulswelle muss ≤99,99% sein.
- Die Abweichung des Tastverhältnisses wird durch das minimale Tastverhältnis der Pulswelle und die aktuelle Flankenzeit begrenzt.

Umfassendes Beispiel

Stellen Sie im PWM-Modus eine interne 2 kHz, 1 Vpp Pulswelle als Trägerwellensignal ein, stellen Sie die Phase der Trägerwelle und die Modulationsphase so ein, dass sie mit einer Frequenz von 1 kHz wechseln, die Einstellschritte wie folgt.

1) Aktivieren des PWM-Modus

Drücken Sie Mode \rightarrow Shape \rightarrow PWM um den PWM-Modus einzuschalten.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
ModWave Rate Duty	Sine 200.000 H 20.00 %	z			
ModWave	Rate	Duty	Return		

2) Modulationsrate einstellen

Drücken Sie den Softkey Rate und verwenden Sie die numerische Tastatur zur Eingabe von 200 und wählen Sie dann die Einheit des Parameters Hz.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
ModWave Rate Duty	Sine 20 <mark>0</mark> .000 H 20.00 %	İz			
ModWave	Rate	Duty	Return		

3) Arbeitszyklus einstellen

Drücken Sie den Softkey DutyCycle und geben Sie über die numerische Tastatur 50 ein und wählen Sie dann die Einheit des Parameters %.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
ModWave Rate Duty	Sine 200.000 H 50.00 %	İz			
ModWave	Rate	Duty	Return		

4) Trägerwellensignal einstellen

Drücken Sie die Taste Wave, um die Trägerwellenschnittstelle aufzurufen, und wählen Sie Pulswelle als Trägerwelle aus (die Standardeinstellung ist Pulswelle).

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Freq Amp	1.000,000, 100 mVpp	,00 kHz	6		
Offset	0 mV				
Phase	0.00 °				
Duty	<mark>5</mark> 0.000 %				
Rise	15 ns		J		
Fall	15 ns				
Freq	Атр	Offset	Phase	Duty	Page Down

Drücken Sie den Softkey Freq, um die Frequenz einzustellen, geben Sie mit der numerischen Tastatur 2 ein und wählen Sie dann die Einheit des Parameters kHz;

Drücken Sie den Softkey Amp, um die Amplitude einzustellen, verwenden Sie die numerische Tastatur, um 1 einzugeben und wählen Sie dann die Einheit des Parameters auf Vpp.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Freq Amp	2.000,000, 1.000 Vpp	00 kHz			
Offset	0 mV				
Phase	0.00 °			•••••	
Duty	50.000 %				
Rise	15 ns		¥		
Fall	15 ns				
Freq	Атр	Offset	Phase	Duty	Page Down

5) Aktivieren der Kanalausgabe

Drücken Sie die Taste CH1. Wenn die Kontrollleuchte leuchtet, bedeutet dies, dass der Kanalausgang aktiviert ist.

CH1	Limit 50Ω	PWM	CH2	Limit 50Ω	OFF
Freq	2.000,000	,00 kHz	A		
Атр	1.000 Vpp		- *		
Offset	0 mV				
Phase	0.00 °				
Duty	50.000 %				
Rise	15 ns		J		
Fall	15 ns				
Freq	Атр	Offset	Phase	Duty	Page Down

Um die Form des PSK durch ein Oszilloskop zu betrachten, wie in der folgenden Abbildung gezeigt.

4.2 Ausgangsfrequenz Wobbelwelle

Im Frequenz-Sweep-Modus ändert sich die Ausgangsfrequenz des Geräts während der angegebenen Sweep-Zeit linear oder logarithmisch von der Startfrequenz zur Stoppfrequenz. Sinuswellen, Rechteckwellen, Rampenwellen und Arbiträrwellen (außer DC) können alle die Frequenzsweep-Ausgabe erzeugen.

4.2.1 Frequenzdurchlauf auswählen

1) Aktivieren des Frequenz-Sweep-Modus

Drücken Sie die Taste Mode → Sweep → Linear, um den Frequenz-Sweep-Modus zu aktivieren. Das Gerät gibt dann die Frequenz-Sweep-Welle entsprechend der aktuellen Einstellung aus. Die Einstellung für den linearen Frequenzsweep ist in der folgenden Abbildung dargestellt.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
StartFred StopFred SweepTim	a 1.000,000, 20.000,00 e 100 ms	,00 kHz 0,0 kHz			
StartFreq	StopFreq	SweepTime	Return		

2) Frequenzsuchlaufwelle auswählen

Die Frequenzwobbelwelle kann eine Sinuswelle, Pulswelle, Rampenwelle oder Arbiträrwelle sein. Die Standardeinstellung ist Sinuswelle. Nachdem Sie den Frequenzsweep-Modus ausgewählt haben, drücken Sie die Taste Wave, um die Trägerwellenschnittstelle aufzurufen.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Freq Amp	1.000,000,0 100 mVpp	00 kHz	Ĥ		
Offset	0 mV				
Phase	0.00 °		¥	\rightarrow	<u></u>
Sine	Square	Pulse	Ramp	Arb ~~	Page Down

4.2.2 Start- und Stoppfrequenz einstellen

Startfrequenz und Stoppfrequenz sind die Ober- und Untergrenze der Frequenz für den Frequenzsweep. Der Funktions-/Arbiträr-Signal-Generator wobbelt immer von der Startfrequenz zur Stoppfrequenz und zurück zur Startfrequenz.

Drücken Sie die Taste Mode Sweep Linear, um die Oberfläche für die Sweep-Einstellung aufzurufen. Verwenden Sie den Multifunktionsdrehknopf und die Pfeiltaste oder drücken Sie die Softtaste Start oder Stop und geben Sie dann über die numerische Tastatur eine Zahl ein und wählen Sie die Softtaste Einheit, um die Einstellung abzuschließen.

Hinweise

- Wenn die Startfrequenz < Stoppfrequenz ist, wobbelt die DDS-Funktion/der Generator für beliebige Wellenformen von der niedrigen zur hohen Frequenz.
- Wenn die Startfrequenz > Stoppfrequenz ist, wobbelt die DDS-Funktion/der Arbiträr-Signal-Generator von der hohen Frequenz zur niedrigen Frequenz.
- Wenn Startfrequenz = Stoppfrequenz, gibt die DDS-Funktion/der Arbiträr-Signal-Generator die Festfrequenz aus.

Die Startfrequenz ist standardmäßig 1 kHz und die Stoppfrequenz ist 20 kHz. Der Bereich der Start- und Stoppfrequenz variiert mit der Frequenz der Sweep-Welle. Der Frequenzbereich für jede Frequenz der Sweep-Welle ist in der folgenden Tabelle angegeben.

	Frequenz						
Trägerwelle		UTG1042X	UTG1022X/-PA				
	Mindestwert	Maximaler Wert	Mindestwert	Maximaler Wert			
Sinuswelle	1µHz	40 MHz	1µHz	20 MHz			
Rechteckige Welle	1µHz	20 MHz	1µHz	10 MHz			
Rampe Welle	1µHz	1 MHz	1µHz	400 kHz			
Impulswelle	1µHz	20 MHz	1µHz	10 MHz			

Beliebige Welle	1µHz	10 MHz	1µHz	5 MHz
-----------------	------	--------	------	-------

4.2.3 Frequenz-Sweep-Modus

Drücken Sie die Taste Sweep, um linear oder logarithmisch zu wählen;

Linear: Der Wellenformgenerator gibt die Frequenz während des Frequenzdurchlaufs linear aus;

Logarithmisch: Der Wellenformgenerator ändert die Ausgangsfrequenz in logarithmischer Weise.

4.2.4 Frequenzdurchlaufzeit

Im Frequenz-Sweep-Modus können Sie die Zeit für den Frequenz-Sweep einstellen (der Bereich reicht von 1 ms bis 500 s), die Standardeinstellung ist 1 s. Sie kann durch Drücken des Softkeys Time geändert werden. Geben Sie die Zahl über die numerische Tastatur ein und wählen Sie den Softkey Einheit, um die Einstellung abzuschließen.

4.2.5 Umfassendes Beispiel

Im Frequenz-Sweep-Modus stellen Sie eine interne Rechteckwelle mit einer Amplitude von 1 Vpp und einem Tastverhältnis von 50% als Frequenz-Sweep-Welle ein. Der Frequenz-Sweep-Modus ist auf linear eingestellt, stellen Sie die Startfrequenz auf 1 kHz, die Stoppfrequenz auf 50 kHz und die Sweep-Zeit auf 2 ms ein und verwenden Sie den internen Quellentrigger zur Ausgabe der Frequenz-Sweep-Welle.

Die Einstellung erfolgt wie folgt.

1) Aktivieren des linearen Sweep-Modus

Drücken Sie den Mode \rightarrow Sweep \rightarrow Linear, um den linearen Sweep-Modus einzuschalten.

2) Frequenzwobbelwelle auswählen

Drücken Sie die Taste Wave, um die Wobbelfrequenz-Wellenschnittstelle aufzurufen und wählen Sie Rechteckwelle (die Standardeinstellung ist Sinuswelle).

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Freq	1.000,000,	00 kHz	A		
Атр	100 mVpp				→
Offset	0 mV				
Phase	0.00 °			· · · · · · · · · · · · · · · · · · ·	
Duty	50.000 %				
Sine	Square	Pulse	Ramp	Arb	Page
\sim		Л	\sim	$\sim \sim$	Down

Drücken Sie den Softkey Amp, um die Amplitude einzustellen, verwenden Sie die numerische Tastatur, um 1 einzugeben und wählen Sie dann die Einheit des Parameters Vpp;

Drücken Sie den Softkey DutyCycle, um die Einschaltdauer einzustellen. Verwenden Sie die numerische Tastatur, um 50 einzugeben und wählen Sie dann als Einheit des Parameters % (die Standardeinstellung für die Einschaltdauer ist 50%).

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Freq Amp Offset Phase	1.000,000, 1.000 Vpp 0 mV 0.00 °	00 kHz	•		
Duty	50.000 %		×		
Freq	Атр	Offset	Phase	Duty	Return

3) Start-/Stoppfrequenz, Sweep-Zeit einstellen

Drücken Sie den Modus \rightarrow Sweep \rightarrow Linear, um den linearen Sweep zu aktivieren.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
StartFreq StopFreq SweepTime	1.000,000, 20.000,00 100 ms	00 kHz 0,0 kHz	•		
StartFreq	StopFreq	SweepTime	Return		

Drücken Sie die Softkey-Taste <u>Start</u> oder <u>Stop</u>, geben Sie über die numerische Tastatur 1 ein und wählen Sie dann die Einheit des Parameters <u>kHz</u>. Die Standard-Startfrequenz ist 1 kHz.

Drücken Sie den Softkey Stop, geben Sie mit der numerischen Tastatur 50 ein und wählen Sie dann die Einheit des Parameters kHz.

Drücken Sie den Softkey Time, verwenden Sie die numerische Tastatur zur Eingabe von 2 und wählen Sie dann die Einheit des Parameters ms.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
StartFreq StopFreq SweepTime	1.000,000, 50.000,00 2 ms	,00 kHz 0,0 kHz	•		
StartFreq	StopFreq	SweepTime	Return		

4) Aktivieren der Kanalausgabe

Drücken Sie die Taste CH1. Wenn die Kontrollleuchte leuchtet, bedeutet dies, dass der Kanalausgang aktiviert ist.

CH1	Limit 50Ω	Line	CH2	Limit 50Ω	OFF
StartFred StopFred SweepTime	a 1.000,000, 50.000,00 e 2 ms	,00 kHz 0,0 kHz	₽		
StartFreq	StopFreq	SweepTime	Return		

Um die Form der linearen Sweep-Welle durch ein Oszilloskop zu betrachten, wie in der folgenden Abbildung gezeigt.

4.3 Ausgangsimpuls String

Der Wellenformgenerator kann Wellen mit einer bestimmten Zykluszahl erzeugen (die als Impulsfolge bezeichnet wird). UTG1000X unterstützt interne und externe Trigger, um die Ausgabe der Impulsfolge zu steuern. Es gibt drei Arten von Impulsketten: N-Zyklus, Gating und unendlich. Sinuswelle, Rechteckwelle, Rampenwelle, Pulswelle, Arbiträrwelle (außer DC) oder Rauschen (nur für Gating Pulse String) können alle Pulse String erzeugen. Die Modulationsmodi der beiden Kanäle sind unabhängig voneinander. Der Benutzer kann den gleichen oder einen

anderen Modulationsmodus für die beiden Kanäle einstellen.

4.3.1 Impulsfolge auswählen

1) Aktivieren des linearen Sweep-Modus

Drücken Sie die Taste Mode→Burst, um den Impulsfolgemodus einzuschalten. Nachdem der Impulsfolgenmodus aktiviert ist, gibt der Wellenformgenerator die Impulsfolge entsprechend der aktuellen Einstellung aus.

CH1	Limit 50Ω	NCyc	CH2	Limit 50Ω	OFF
TrigSrc Period Phase Cycles	Internal 1.000,0 mm 0.00 ° 1	3			
NCyc	Infinite	Gated	Return		

2) Welle wählen

- Der N-Zyklus-Modus unterstützt Sinuswellen, Rechteckwellen, Rampenwellen, Pulswellen und Arbiträrwellen (außer DC).
- Der Gating-Modus unterstützt Sinuswellen, Rechteckwellen, Rampenwellen, Pulswellen, Arbiträrwellen (außer DC) und Rauschwellen.
- Der Infinite-Modus unterstützt Sinuswellen, Rechteckwellen, Rampenwellen, Pulswellen und Arbiträrwellen (außer DC).

Nachdem der Impulsfolgenmodus durch die obigen Schritte aktiviert wurde, drücken Sie die Taste Wave, um die Trägerwellenschnittstelle aufzurufen.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Freq Aπp Offset Phase	1.000,000 100 mVpp 0 mV 0.00 °	,00 kHz			7
Sine	Square	Pulse J	Ramp	Arb ~~	Page Down

3) Wellenfrequenz einstellen

Im N-Zyklus- und Gating-Modus definiert die Wellenfrequenz die Signalfrequenz während der Impulsfolge. Im N-Zyklus-Modus wird die Impulsfolge mit der angegebenen Anzahl von Zyklen und Wellenfrequenz ausgegeben. Im Gating-Modus wird die Impulsfolge mit der Wellenfrequenz ausgegeben, wenn das Triggersignal einen hohen Pegel hat.

Hinweise

Die Wellenfrequenz unterscheidet sich von der Impulsfolgeperiode. Die Impulsfolgeperiode wird verwendet, um das Intervall zwischen den Impulsfolgen anzugeben (nur für den N-Zyklus-Modus). Die Standardfrequenz für jede Welle ist 1 kHz, den Einstellbereich finden Sie in Tabelle 4-3.

Tabelle 4-5								
		Frequenz						
Trägerwelle		UTG1042X	UTG1022X/-PA					
	Mindestwert	Maximaler Wert	Mindestwert	Maximaler Wert				
Sinuswelle	1µHz	40 MHz	1µHz	20 MHz				
Rechteckige Welle	1µHz	20 MHz	1µHz	10 MHz				
Rampe Welle	1µHz	1 MHz	1µHz	400 kHz				
Impulswelle	1µHz	20 MHz	1µHz	10 MHz				
Beliebige Welle	1µHz	10 MHz	1µHz	5 MHz				

Wenn Sie die Frequenz der Welle einstellen möchten, wählen Sie bitte zunächst die Welle aus und verwenden dann den Multifunktionsdrehknopf oder drücken Sie den Softkey **Freq**, um die Frequenz einzustellen.

4.3.2 Impuls String Typ

UTG1000X kann drei Arten von Impulsfolgen ausgeben: N-Zyklus, Gating und unendlich. Der Standardtyp ist N-Zyklus.

1) N Zyklus-Modus

Drücken Sie NCycle, um den N-Zyklus-Modus aufzurufen. Der Wellenformgenerator gibt eine Wellenform mit der angegebenen Zyklusnummer (Impulsfolge) aus. Nach der Ausgabe einer bestimmten Zyklusnummer hält der Wellenformgenerator an und wartet auf den nächsten Trigger. Die Triggerquelle für die Impulsfolge kann in diesem Modus intern oder extern sein. Sie können sie mit dem Multifunktionsdrehknopf und den Pfeiltasten ändern oder den Softkey TrigSrc drücken, um die Einstellung abzuschließen (wie in der folgenden Abbildung gezeigt).

CH1	Limit 50Ω	NCyc	CH2	Limit 50Ω	OFF
TrigSrc Period Phase Cycles	Internal 1.000,0 ms 0.00 ° 1	3	∎ \\	A A	
			V	V VV	
NCyc	Infinite	Gated	Return		

2) Gating-Modus

Drücken Sie Gate, um in den Gating-Modus zu gelangen. Die Optionen Triggerquelle, Triggerflanke, Burst und Zyklusnummer in der Parameterliste werden automatisch ausgeblendet. Der Wellenformgenerator wird

durch den externen digitalen Modulationsanschluss (FSK/CNT-Anschluss) auf der Rückseite des Geräts getriggert, so dass er nur die externe Triggerquelle verwenden kann. Wenn die Polarität positiv ist und das Trigger-Eingangssignal einen hohen Pegel hat, gibt der Wellenformgenerator eine kontinuierliche Welle aus; wenn das Trigger-Eingangssignal einen niedrigen Pegel hat, muss er zunächst die aktuelle Wellenperiode abschließen und sie dann stoppen, während die Startphase der ausgewählten Welle auf dem entsprechenden Pegel bleiben sollte. Bei einer Rauschwelle wird die Ausgabe sofort gestoppt, wenn das Gating-Signal zu einem Fake wird. Die Polarität kann mit dem Multifunktionsdrehknopf und den Pfeiltasten ausgewählt werden oder drücken Sie den Softkey Polarity, um die Einstellung abzuschließen (wie in der folgenden Abbildung gezeigt).

CH1	Limit 50Ω	Gated	CH2	Limit 50Ω	OFF
Phase Polarity	0.00 ° Positive		•		
NCyc	Infinite	Gated	Return		

3) Unendlicher Modus

Drücken Sie Infinite, um in den unendlichen Modus zu gelangen. Die Optionen für die Burst-Periode (Impulsfolgeperiode) und die Zyklusanzahl in der Parameterliste werden automatisch ausgeblendet. Unendliche Impulsfolge bedeutet, dass Sie die Anzahl der Wellenzyklen auf unendlich groß einstellen. Der Wellenformgenerator gibt eine kontinuierliche Welle aus, wenn er ein Triggersignal empfängt. Die Triggerquelle der Impulsfolge kann in diesem Modus intern oder extern sein. Sie können sie mit dem Multifunktionsdrehknopf und den Pfeiltasten ändern oder den Softkey TrigSrc drücken, um die Einstellung abzuschließen (wie in der folgenden Abbildung gezeigt).

4.3.3 Startphase der Impulsfolge

Die Phase der Impulsfolge ist die Phase des Startpunkts für die Impulsfolge. Sie kann auf 0°~ +360° eingestellt werden. Die Standard-Startphase ist 0°. Sie kann mit dem Multifunktionsdrehknopf und den Pfeiltasten geändert werden, oder drücken Sie den Softkey <u>StartPhase</u>, um die Einstellung abzuschließen.

- Bei Sinus-, Rechteck-, Rampen- und Pulswellen ist 0° der Punkt, an dem die Wellenform 0 V (oder den DC-Abweichungswert) in Vorwärtsrichtung passiert.
- Bei einer beliebigen Wellenform ist 0° der erste Punkt der Wellenform, der in den Speicher geladen wird.
- Die Startphase hat keinen Einfluss auf die Rauschwelle.

4.3.4 Periode der Impulsfolge

CH1	Limit 50Ω	NCyc	CH2	Limit 50Ω	OFF
TrigSrc Period Phase Cycles	Internal 1.000,0 mm 0.00 ° 1	5			
NCyc	Infinite	Gated	Return		

Burst (Periode der Impulsfolge) ist nur für den N-Zyklus-Modus, d.h. die Zeit von einer Impulsfolge zur nächsten Impulsfolge. Wenn die Triggerquelle extern ist, wird die Option Burst (Periode der Impulskette) in der Parameterliste ausgeblendet. Der Bereich von Burst (Periode der Impulsfolge) kann auf 1µs~500s eingestellt werden; der Standardbereich ist 1,001ms. Nachdem Sie den Typ N-Zyklus ausgewählt haben, können Sie ihn mit dem Multifunktionsdrehknopf und den Pfeiltasten ändern oder den Softkey Burst drücken, um die Einstellung abzuschließen.

Hinweise

- Burst (Periode der Impulsfolge) ≥ Wellenformperiode × Zyklusnummer (Anzahl der Impulsfolge). Hier ist die Wellenformperiode der Kehrwert der Wellenfrequenz, die in Select Burst angegeben ist.
- Wenn der Burst (Periode der Impulsfolge) zu kurz ist, erhöht der Wellenformgenerator die vorgesehene Periode, um die Ausgabe einer bestimmten Anzahl von Zyklen zu ermöglichen.

4.3.5 Zyklusnummer von Pulse String

Im Modus N-Zyklus wird die Anzahl der Wellenformzyklen durch Zählen von Impulsfolgen festgelegt. Der Bereich kann auf 1- 50000 eingestellt werden. Die Voreinstellung ist 1. Nachdem Sie den Typ N-Zyklus ausgewählt haben, können Sie ihn mit dem Multifunktionsdrehknopf und den Pfeiltasten ändern oder den Softkey Cycle drücken, um die Einstellung abzuschließen.

Hinweise

- Zyklusnummer< Triggerperiode × Wellenfrequenz
- Wenn die Anzahl der Zyklen die oben genannten Grenzen überschreitet, erhöht der Wellenformgenerator die Periode der Impulsfolge, um die vorgesehene Anzahl der Impulsfolgen automatisch anzupassen (aber die Wellenfrequenz wird nicht verändert).

4.3.6 Triggerquelle

Der Wellenformgenerator erzeugt eine Impulsfolge, wenn er ein Triggersignal empfängt und auf die nächste Triggerquelle wartet. Die Triggerquelle für die Impulskette kann intern oder extern sein. Sie können sie mit dem Multifunktionsdrehknopf und den Pfeiltasten ändern oder die Softtaste **TrigSrc** drücken, um die Einstellung in der Schnittstelle für die Impulsfolge abzuschließen.

- Der Wellenformgenerator gibt weiterhin die angegebene Frequenz aus, wenn eine interne Triggerquelle vorhanden ist. Die Frequenz der ausgegebenen Impulsfolge wird durch die Impulsfolgeperiode gesteuert. Der Wellenformgenerator kann Impulsfolgen des Typs N-Zyklus und unendlich ausgeben.
- 2) Der Wellenformgenerator wird durch den externen digitalen Modulationsanschluss (FSK/CNT-Anschluss) auf der Rückseite ausgelöst, wenn eine externe Quelle angeschlossen ist. Der Wellenformgenerator kann eine Impulsfolge ausgeben, wenn er einen TTL-Impuls mit bestimmter Polarität empfängt. Der Wellenformgenerator kann die Impulsfolge des N-Zyklus und des unendlichen Typs ausgeben.

4.3.7 Triggerflanke

Der externe digitale Modulationsanschluss (FSK/CNT-Anschluss) kann als Eingang oder Ausgang bezeichnet werden. Die steigende Flanke und die fallende Flanke können eingestellt werden, "steigende Flanke" bedeutet, dass die steigende Flanke des externen Signals die Ausgabe einer Impulsfolge auslöst; "fallende Flanke" bedeutet, dass die fallende Flanke des externen Signals die Ausgabe einer Impulsfolge auslöst.

Im Gating-Modus wird bei positiver Polarität in der Parameterliste, dem externen Signal mit hohem Pegel, eine Impulsfolge ausgegeben; bei negativer Polarität, dem externen Signal mit niedrigem Pegel, wird eine Impulsfolge ausgegeben. Die Standardeinstellung ist steigende Flanke. Sie können die Einstellung mit dem Multifunktionsdrehknopf und den Pfeiltasten ändern oder die Softtaste TrigEdg →TailEdge drücken (drücken Sie die Softtaste Polarity→Negative (im Gating-Modus), um die Einstellung in der Schnittstelle für Impulsfolgen abzuschließen.

4.3.8 Umfassendes Beispiel

Stellen Sie im Burst-Modus eine Sinuswelle mit einer Periode von 5 ms und einer Amplitude von 500 mVpp als Pulskette ein, stellen Sie den Burst-Modus auf N-Zyklus, die Pulsketten-Periode auf 15 ms und die Anzahl der Zyklen auf 2, und nehmen Sie die folgenden Einstellungen vor,

1) Aktivieren des Burst-Modus

Drücken Sie den Mode \rightarrow Burst \rightarrow NCycle, um den Burst-Modus auf "N-Zyklus" einzustellen.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
TrigSrc Period Phase Cycles	Internal 1.000,0 m 0.00 ° 1	5			
NCyc	Infinite	Gated	Return		

2) Wählen Sie Pulse String Wave

Drücken Sie ausgehend von Schritt 1 auf Wave → Sine, um die Sinuswelle als Trägerwelle auszuwählen. Die Standardeinstellung für die Impulsfolge ist die Sinuswelle, ändern Sie diese Einstellung also nicht.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Freq Amp Offset	1,000,000, 100 mVpp 0 mV	,00 kHz			—•
Phase	0.00 °		/		/
Freq	Атр	Offset	Phase	Return	

Die Amplitudeneinstellung kann mit dem Multifunktionsdrehknopf und den Pfeiltasten vorgenommen werden. (Hinweise: Wenn die Einstellungsschnittstelle Freq anzeigt, bedeutet dies, dass sie nur den Frequenzparameter ändern kann, nicht aber die Periode. Wenn es Period anzeigt, entsprechen 2ms Periode 500 Hz und ihre reziproke Beziehung ist T=1/f). Drücken Sie Freq \rightarrow Freq (das zweite Mal, wenn Sie den Softkey Freq drücken, wird die Umrechnung von Frequenz und Periode in der Parameterliste durchgeführt), die Schnittstelle wird wie in der folgenden Abbildung gezeigt.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Period Amp	1.000,000 100 mVpp	ms	₿ "_		
Phase	0 mv 0.00 °		· /		/
Period	Атр	Offset	Phase	Return	

Drücken Sie den entsprechenden Softkey, um einen Parameter einzustellen, einen numerischen Wert einzugeben und dann die Einheit zu wählen.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
Period Amp Offset	1.000,000 500 mVpp 0 mV	ms			
Phase	0.00 °				7
Period	Атр	Offset	Phase	Return	

3) Periode und Wellenzyklus der Impulsfolge einstellen

Nachdem Sie eine Pulswelle und den entsprechenden Parameter ausgewählt haben, drücken Sie Mode→Burst →NCycle, um wie folgt zur Schnittstelle zurückzukehren,

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
TrigSrc Period Phase Cycles	Internal 5.000,1 ms 0.00 ° 1	3			_
TrigSrc	Period	Phase	Cycles	Return	

Drücken Sie den entsprechenden Softkey, um einen Parameter einzustellen, einen numerischen Wert einzugeben und dann die Einheit zu wählen.

CH1	Limit 50Ω	OFF	CH2	Limit 50Ω	OFF
TrigSrc Period Phase Cycles	Internal 5.000,1 ms 0.00 °	5			_
TrigSrc	Period	Phase	Cycles	Return	

4) Aktivieren der Kanalausgabe

Drücken Sie die Taste CH1 auf der Vorderseite des Geräts, um den Ausgang CH1 schnell einzuschalten, oder drücken Sie die Utility-Taste, um das Etikett herauszuklappen, und drücken Sie dann die Softtaste CH1, um den Kanalausgang einzuschalten. Wenn die Kanalausgabe aktiviert ist, leuchtet die Taste CH1 und das graue Zeichen OFF wird zu einem gelben "N Cycle" in der Hintergrundbeleuchtung des CH1-Etiketts, was bedeutet, dass die CH1-Ausgabe eingeschaltet ist.

CH1	Limit 50Ω	NCyc	CH2	Limit 50Ω	OFF
TrigSrc Period Phase Cycles	Internal 5.000,1 ms 0.00 ° 2	5			_
TrigSrc	Period	Phase	Cycles	Return	

Um die Form der Impulsfolge mit einem Oszilloskop zu betrachten, wie in der folgenden Abbildung gezeigt.

4.4 Ausgabe Arbiträrwelle

Das Gerät verfügt über 200 Arten von Arbiträrwellen, die Namen der Wellen beziehen sich auf die integrierte Arbiträrwellenliste.

4.4.1 Beliebige Welle

Drücken Sie Mode→Arbitrary, um die Arbiträrwellenfunktion zu aktivieren. Das Gerät gibt die Arbiträrwellenform entsprechend der aktuellen Einstellung aus.

CH1	Limit 50Ω	\sim	CH2	Limit 50Ω	OFF
WaveFile Freq Amp Offset Dbases	AbsSine.b 1.000,000, 100 mVpp 0 mV	sv 00 kHz	6		\
rnase	0.00		/		
WaveFile	Freq	Атр	Offset	Phase	Return

4.4.2 Beliebige Welle auswählen

Der Benutzer kann die integrierte Arbiträrwelle auswählen. Wenn die Arbiträrwellenfunktion aktiviert ist, verwenden Sie den Multifunktionsdrehknopf und die Pfeiltasten oder drücken Sie den Softkey WaveFile, um die Arbiträrwelle auszuwählen.

Eingebaute Arbiträrwellenliste: Siehe Anhang B

Kapitel 5 Fehlerbehebung

Mögliche Fehler bei der Verwendung des UT1000X und Methoden zur Fehlerbehebung sind unten aufgeführt. Bitte beheben Sie den Fehler wie in den entsprechenden Schritten beschrieben. Wenn der Fehler nicht behoben werden kann, wenden Sie sich bitte an den Händler oder die örtliche Niederlassung und geben Sie die Modellinformationen an (drücken Sie zur Überprüfung die Taste Utility) System About).

5.1 Keine Anzeige auf dem Bildschirm (leerer Bildschirm)

Wenn der Wellenformgenerator beim Betätigen des Netzschalters an der Vorderseite des Geräts keinen Bildschirm anzeigt.

- 1) Prüfen Sie, ob die Stromquelle gut angeschlossen ist.
- 2) Prüfen Sie, ob der Netzschalter gedrückt ist.
- 3) Starten Sie das Gerät neu.
- 4) Wenn das Gerät dann immer noch nicht funktioniert, wenden Sie sich bitte an den Händler oder die örtliche Niederlassung, um das Produkt warten zu lassen.

5.2 Keine Wellenformausgabe

In der korrekten Einstellung, aber das Gerät hat keine Wellenformanzeige.

- 1) Prüfen Sie, ob das BNC-Kabel und der Ausgangsanschluss richtig angeschlossen sind.
- 2) Prüfen Sie, ob die Tasten CH1, CH2 eingeschaltet sind.
- 3) Wenn das Gerät immer noch nicht funktioniert, wenden Sie sich bitte an den Händler oder die örtliche Niederlassung für den Produktwartungsdienst.

Kapitel 6 Service und Unterstützung

6.1 Pflege und Reinigung

(1) Allgemeine Wartung

Halten Sie das Gerät von direktem Sonnenlicht fern.

Vorsicht

Halten Sie Sprays, Flüssigkeiten und Lösungsmittel vom Gerät oder der Sonde fern, um eine Beschädigung des Geräts oder der Sonde zu vermeiden.

(2) Reinigung

Überprüfen Sie das Gerät regelmäßig je nach Betriebszustand. Führen Sie die folgenden Schritte aus, um die äußere Oberfläche des Geräts zu reinigen:

- a. Bitte verwenden Sie ein weiches Tuch, um den Staub von der Außenseite des Geräts abzuwischen.
- b. Achten Sie bei der Reinigung des LCD-Bildschirms darauf, den transparenten LCD-Bildschirm zu schützen.
- c. Verwenden Sie zum Reinigen des Staubschutzes einen Schraubendreher, um die Schrauben der Staubschutzabdeckung zu entfernen, und nehmen Sie dann den Staubschutz ab. Setzen Sie das Staubschutzgitter nach der Reinigung in der richtigen Reihenfolge ein.
- d. Trennen Sie das Gerät von der Stromversorgung und wischen Sie es dann mit einem feuchten, aber nicht tropfenden weichen Tuch ab. Verwenden Sie keine scheuernden chemischen Reinigungsmittel für das Gerät oder die Sonden.

Warnung

Bitte vergewissern Sie sich, dass das Gerät vor der Verwendung vollständig trocken ist, um elektrische Kurzschlüsse oder sogar Verletzungen durch Feuchtigkeit zu vermeiden.

6.2 Garantie

UNI-T (UNI-TREND TECHNOLOGY (CHINA) CO., LTD.) gewährleistet die Herstellung und den Verkauf von Produkten, die ab dem Lieferdatum des autorisierten Händlers ein Jahr lang keine Material- und Verarbeitungsfehler aufweisen. Sollte sich das Produkt innerhalb dieses Zeitraums als fehlerhaft erweisen, wird UNI-T das Produkt gemäß den detaillierten Bestimmungen der Garantie reparieren oder ersetzen.

Um eine Reparatur zu veranlassen oder ein Garantieformular zu erhalten, wenden Sie sich bitte an die nächstgelegene UNI-T Vertriebs- und Reparaturabteilung.

Zusätzlich zu der durch diese Zusammenfassung oder eine andere anwendbare Versicherungsgarantie gewährten Erlaubnis gibt UNI-T keine andere ausdrückliche oder stillschweigende Garantie, einschließlich, aber nicht beschränkt auf den Produkthandel und den besonderen Zweck für jegliche stillschweigende Garantien.

In jedem Fall übernimmt UNI-T keine Verantwortung für indirekte, besondere oder Folgeschäden.

6.3 Kontaktieren Sie uns

Wenn Ihnen die Verwendung dieses Produkts Unannehmlichkeiten bereitet hat, können Sie sich direkt an UNI-T wenden, wenn Sie sich auf dem chinesischen Festland befinden.

Service-Unterstützung: 8 Uhr bis 17.30 Uhr (UTC+8), Montag bis Freitag oder per E-Mail. Unsere E-Mail-Adresse

lautet infosh@uni-trend.com.cn.

Für Produktunterstützung außerhalb des chinesischen Festlandes wenden Sie sich bitte an Ihren lokalen UNI-T Händler oder Ihr Vertriebszentrum.

Für viele UNI-T Produkte besteht die Möglichkeit, die Garantie- und Kalibrierungsdauer zu verlängern. Bitte wenden Sie sich an Ihren UNI-T Händler oder Ihr Vertriebszentrum vor Ort.

Eine Liste der Adressen unserer Servicezentren finden Sie auf unserer Website unter URL: http://www.uni-trend.com

Anhang A Werkseinstellung

Parameter	Werkseitige Standardeinstellung
Kanal Parameter	
Strom-Trägerwelle	Sinuswelle
Ausgang unter Last	Hoch
Sync-Ausgang	AUS
Kanal Ausgang	AUS
Kanal Ausgang Rückwärts	AUS
Amplitude Grenze	AUS
Obere Grenze der Amplitude	+10 V
Untere Grenze der Amplitude	-10 V
Grundwelle	
Frequenz	1 kHz
Amplitude	100 mVpp
DC-Abweichung	0 mV
Start Phase	0°
Tastverhältnis der Rechteckwelle	50%
Symmetrie der Rampenwelle	50%
Tastverhältnis der Impulswelle	50%
Steigende Flanke der Pulswelle	15ns
Fallende Flanke der Impulswelle	15ns
Beliebige Welle	
Eingebaute Arbiträrwelle	AbsSine
AM	
Modulationswelle	Sinuswelle
Modulationsfrequenz	100 Hz
Modulationstiefe	100%
FM	
Modulationswelle	Sinuswelle
Modulationsfrequenz	100 Hz
Frequenzabweichung	1 kHz
PM	
Modulationswelle	Sinuswelle

Modulationsfrequenz	100 Hz
Phasenabweichung	180°
ASK	
ASK-Rate	100 Hz
FSK	
Modulationsquelle	Intern
FSK-Rate	100 Hz
Sprungfrequenz	10 kHz
PSK	
Modulationsquelle	Intern
PSK-Rate	100 Hz
Phase	180°
PWM	
Modulationswelle	Sinuswelle
PWM-Rate	100 Hz
Einschaltdauer	20%
Frequenzdurchlauf	
Frequenz-Sweep-Typ	Linear
Start Frequenz	1 kHz
Stoppfrequenz	20 kHz
Suchlaufzeit	100 ms
Impuls String	
Auslöser Quelle	Intern
Start Phase	0°
Polarität	Positiv
Bersten	1.0001ms
Zyklus Nummer	1
System Parameter	
Piep	ON
Digitales Trennzeichen	,
Hintergrundbeleuchtung	90%
Sprache	Das hängt von der Werkseinstellung a

Appendix B Eingebaute Arbiträrwellenliste

Тур	Name	Beschreibung	
	AbsSine	Sinus Absolutwert	
	AbsSineHalf	Absoluter Wert des Halbsinus	
	AmpALT	Sinus verstärken	
	AttALT	Abgeschwächter Sinus	
	Gaußscher_Monopuls	Gaußscher Monopuls	
	GaussPulse	Gaußscher Impuls	
<u> </u>	NegRamp	Neigung zum Abstieg	
	NPulse	N-Impuls-Signal	
(15 Typen)	PPulse	P-Impuls-Signal	
	SineTra	Tra-Sinus-Signal	
	SineVer	Ver-Sinus-Signal	
	StairUD	Leiter Leiter	
	StairDn	Treppe runter	
	StairUp	Treppe hoch	
	Trapezia	Trapezförmig	
	BandLimited	Bandbegrenztes Signal	
		Vibration beim Sprengen	
	Blaselwave	"Kurve "Zeit-Vibrations-Geschwindigkeit	
	Butterworth	Butterworth-Filter	
	Tschebyscheffe1	Typ I Tschebyscheff-Filter	
	Tschebyscheffe2	Typ II Tschebyscheff-Filter	
	Kombinieren Sie	Zusammengesetzte Funktion	
	CPulse	C-Impuls-Signal	
	CWPulse	CW-Impulssignal	
Matai	DampedOsc	Gedämpfte Vibrationskurve "Zeit-Verschiebung"	
(2E Typen)	DualTone	Doppelton-Signal	
(25 Typen)	Gamma	Gamma-Signal	
	GateVibar	Gate selbst-erregtes Oszillationssignal	
	LFMPulse	Linear frequenzmoduliertes Impulssignal	
	MCNoise	Baumaschinenlärm	
	Entladen	Entladungskurve eines Ni-MH-Akkus	
	Pahcur	Stromwellenform eines bürstenlosen DC-Motors	
	Quake	Wellenform eines Erdbebens	
	Radar	Radar-Signal	
	Ripple	Welligkeit der Leistung	
	RoundHalf	Hemisphärische Wellenform	

	RundenPM	RundenPM-Wellenform
	SchrittResp	Sprungantwort-Signal
	SwingOsc	Swing-Oszillationsfunktion-Zeit-Kurve
	TV	Fernsehsignal
	Stimme	Sprachsignal
	Luftig	Luftige Funktion
	Besselj	Bessel-Funktion der Klasse I
	Besselk	Besselsche Funktion
	Bessely	Klasse-II-Bessel-Funktion
	Cauchy	Cauchy-Verteilung
	Kubisch	Kubische Funktion
	Dirichlet	Dirichlet-Funktion
	Erf	Fehlerfunktion
	Erfc	Komplementäre Fehlerfunktion
	ErfcInv	Inverse komplementäre Fehlerfunktion
	ErfInv	Inverse Fehlerfunktion
	ExpFall	Exponential fallende Funktion
	ExpRise	Exponentiell ansteigende Funktion
Mathe	Gammaln	Natürlicher Logarithmus der Gamma-Funktion
(27 Typen)	Gauß	Gaußsche Verteilung (Normalverteilung)
	HaverSine	Haversed Sinus
	Laguerre	Quartisches Laguerre-Polynom
	Laplace	Die Laplace-Verteilung
	Legende	Quintische Legendre-Polynome
	Protokoll	Denar-Logarithmus-Funktion
	LogNormal	Logarithmische Normalverteilung
	Lorentz	Lorentzsche Funktion
	Maxwell	Maxwellsche Verteilung
	Rayleigh	Rayleigh-Verteilung
	Versiera	Versiera
	Weibull	Weibull-Verteilung
	ARB_X2	Quadratische Funktion
SectMod	AM	Amplitudenmodulation einer Sinuswelle
	FM	Sinuswellen-Frequenzmodulation
	PFM	Pulsfrequenz-Modulation
(5 lypen)	PM	Sinuswellen-Phasenverschiebung
	PWM	Pulsbreite modualtion
Bioelect	Herz	Elektrokardio-Signal
(6 Typen)	EOG	Elektro-Okulogramm

	EEG	Elektroenzephalogramm	
	EMG	Elektromyographie	
	Pulssilogramm	Sphygmograph für normale Personen	
	Descreed	Verfallsgeschwindigkeitskurve des einfachen	
	ResSpeed	Volkes	
	LFPulse	Niederfrequente Puls-Elektrotherapie-Wellenform	
	Zehner1	Transkutane elektrische Nervenstimulation	
Madiziniaah		Wellenform 1	
	Zehner2	Transkutane elektrische Nervenstimulation	
(4 Typen)		Wellenform 2	
	Zobpor ⁷	Wellenform der transkutanen elektrischen	
	Zermers	Nervenstimulation 3	
	Zündung	Wellenform der Zündung eines Automobils	
	Zunuung	Verbrennungsmotor	
	IS016750-2 SP	Startschwingungsprofil eines Autos	
	IS016750-2 Start1	Wellenform der Startspannung eines Autos 1	
	ISO16750-2 Beginnend2	2 Wellenform der Startspannung eines Autos 2	
	IS016750-2 Start3	Wellenform der Startspannung eines Autos 3	
	IS016750-2 Ab4	Wellenform der Startspannung eines Autos 4	
	ISO16750-2 VR Profilkarte der zurückgesetzten Arbeitss		
	IS07637-2 TP1	Transiente Phänomene im Auto durch Stromausfall	
		Transiente Phänomene im Automobil, verursacht	
	IS07637-2 TP2A	durch Induktion in der Verkabelung	
Standard	IS07637-2 TP2B	Transiente Phänomene eines Automobils, die durch	
(17 Typop)		das Ausschalten des Start-up-Wechslers	
(iv typen)		verursacht werden	
		Transiente Phänomene des Automobils durch	
	1307037-2 TF3A	Umwandlung	
	IS07637-2 TP3B	Transiente Phänomene des Automobils durch	
		Umwandlung	
	IS07637-2 TP4	Arbeitsprofilkarte des Automobils im Start-up	
	IS07637-2 TP5A	Transiente Phänomene im Automobil, verursacht	
		durch Stromausfall der Batterie	
	IS07637-2 TP5B	Transiente Phänomene eines Automobils,	
		verursacht durch einen Stromausfall der Batterie	
	SCR	SCR-Sintertemperaturverteilung	
	Überspannung	Surge-Signal	
Trigonome	CosH	Hyperbolischer Kosinus	
(21 Typen)	CosInt	Kosinus-Integral	

	Kinderbett	Cotangens-Funktion
	CotHCon	Konkaver hyperbolischer Kotangens
	CotHPro	Konvexer hyperbolischer Kotangens
	CscCon	Konkaver Kosinus
	CscPro	Konvexer Kosinus
	CotH	Hyperbolischer Kotangens
	CscHCon	Konkave hyperbolische Kosekans
	CscHPro	Konvexe hyperbolische Kosekans
	RecipCon	Kehrwert der Depression
	RecipPro	Reziprokwert der Projektion
	SecCon	Die Sekante der Depression
	SecPro	Die Sekante der Projektion
	SecH	Hyperbolische Sekante
	Sinc	Sinc Funktion
	SinH	Hyperbolischer Sinus
	SinInt	Sinus-Integral
	Sqrt	Quadratwurzel-Funktion
	Tan	Tangens-Funktion
	TanH	Hyperbolischer Tangens
	ACosH	Bogenhyperbolische Kosinusfunktion
	ACotCon	Bogenhyperbolische Kosinusfunktion
	ACotPro	Konvexe Bogen-Kotangens-Funktion
	ACotHCon	Konkaver Bogen - hyperbolische Kosinusfunktion
	ACotHPro	Konvexer Bogen - hyperbolische Kosinusfunktion
	ACscCon	Konkavbogen-Kosekans-Funktion
	ACscPro	Konvexe Bogen-Kosekans-Funktion
AntiTrigonome	ACscHCon	Konkave bogenhyperbolische Kosekansfunktion
(16 Typen)	ACscHPro	Konvexe bogenhyperbolische Kosekansfunktion
	ASecCon	Konkave Bogensekantenfunktion
	ASecPro	Konvexe Bogensekantenfunktion
	ASecH	Bogen hyperbolische Sekantenfunktion
	ASin	Arcsin-Funktion
	ASinH	Arcus-Hyperbolicus-Sinus-Funktion
	ATan	Arctan-Funktion
	ATanH	Arcus-Hyperbolicus-Tangens-Funktion
	NoiseBlue	Blaues Rauschen
Lärm	LärmBraun	Braunes Rauschen (rotes Rauschen)
(6 Typen)	LärmGrau	Graues Rauschen
	NoisePink	Rosa Rauschen

	LärmLila	Lila Rauschen
	Noisewhite	Weißes Rauschen
	Bartlett	Bartlett Fenster
	BarthannWin	Geändertes Bartlett-Fenster
	Blackman	Blackman Fenster
	BlackmanH	BlackmanH Fenster
	BohmanWin	Bohman-Fenster
	Boxcar	Rechteckiges Fenster
	ChebWin	Tschebyscheff-Fenster
Fonator	GaußWin	Gauß-Fenster
(17 Typop)	FlattopWin	Flachdach-Fenster
(17 Typen)	Hamming	Hamming-Fenster
	Hanning	Hanning-Fenster
	Kaiser	Kaiser-Fenster
	NuttallWin	Das Minimum von vier Blackman Harris Fenstern
	ParzenWin	Parzen-Fenster
	TaylorWin	Fenster Taylaor
	Dreieck	Viertelfenster (Fejer-Fenster)
	TukeyWin	Tukey-Fenster
	Komplexe Frequenz B- Spline	Komplexe Frequenz B-Spline-Funktion
	Komplexer Gauß	Komplexe Gaußsche Funktion
Komplexe	Komplexe Morlet	Komplexes Morlet-Wavelet
Wavelets	Der Komplex Shannon	Komplexe Shannon-Funktion
(7 lypen)	Mexikanischer Hut	Mexikanischer Hut Wavelet
	Meyer	Meyer-Wavelet
	Morlet	Morlet-Wavelet
	ABA_1_1	
	ABA_1_2	
	ALT_03	
	ALT_04	
	ALT_05	
Andere	AUDIO	
(34 Typen)	COIL_2_1	
	COIL_2_2	
	DC_04	
	ECT_1_2	
	EGR_2	
	EGR_3_2	

EST_03_2	
IAC_1_1	
INJ_1_1	
INJ_2	
INJ_3	
INJ_4	
INJ_5_6	
INJ_7	
KS_1_1	
MAF_1_1	
MAF_1_2	
MAF_5_3	
MAP_1_1	
KARTE_1_2	
MC_3	
Mexikanischer Hut	Mexikanischer Hut Wavelet
02PROPA1	
02PROPA2	
02SNAP	
STAR02_1	
TPS_1_1	
TPS_1_2	