

UTS5000A Series Signal Analyzer

User Manual

V1.1

May 2025

Foreword

Thank you for choosing this UNI-T instrument. For safe and proper use this instrument, please read this manual carefully, especially the safety instructions section.

After reading this manual, it is recommended to keep the manual in a convenient location, preferably near the device, for future reference.

Instruments.uni-trend.com 2 / 92

Safety Information

This chapter contains information and warnings that must be observed. Ensure that the instrument is operated under the safe conditions. In addition to the safety precautions indicated in this chapter, you must also follow accepted safety procedures.

Safety Precautions

Safety Precautions			
Warning	Please follow these guidelines to avoid possible electric shock and		
	risk to pers	onal safety.	
	Users must a	dhere to standard safety precautions during the operation,	
	servicing, and	d maintenance of this device. UNI-T will not be liable for any	
	personal safety and property loss caused by the user's failure following the		
	safety precautions. This device is designed for professional users and		
	responsible organizations for measurement purposes.		
	Do not use th	nis device in any manner not specified by the manufacturer. This	
	device is inte	nded for indoor use only, unless otherwise stated in the product	
	manual.		
Safety Stateme	nts		
	"Warning" i	ndicates the presence of a hazard. It warns users to pay	
	attention to a certain operation process, operation method or		
Warning	similar. Personal injury or death may occur if the rules in the		
wariiiig	"Warning" statement are not properly executed or observed. Do not		
	proceed to the next step until you fully understand and meet the		
	conditions stated in the "Warning" statement.		
	"Caution" in	ndicates the presence of a hazard. It warns users to pay	
	attention to a certain operation process, operation method or		
Caution	similar. Product damage or loss of important data may occur if the		
Guution	rules in the "Caution" statement are not properly executed or		
	observed. Do not proceed to the next step until you fully understand		
	and meet the conditions stated in the "Caution" statement.		
		cates important information. It reminds users to pay	
Note	attention to procedures, methods, and conditions, etc. The contents		
	of "Note" should be highlighted if necessary.		
Safety Signs			
Danger	Danger	It indicates danger of electric shock, which may cause personal	
77	2 4.1901	injury or death.	
\triangle	Warning	It indicates that there are factors you should be cautious of to	

Instruments.uni-trend.com 3 / 92

		prevent personal injury or product damage.	
		It indicates danger, which may cause damage to this device or	
\triangle		,	
	Caution	other equipment if you fail to follow a certain procedure or	
		condition. If the "Caution" sign is present, all conditions must	
		be met before you proceed to operation.	
		It indicates potential problems, which may cause failure of this	
\wedge	Note	device if you fail to follow a certain procedure or condition. If	
		the "Note" sign is present, all conditions must be met before	
		this device will function properly.	
^,	AC	Alternating current of device. Please check the region's	
		voltage range.	
.===	DC	Direct current device. Please check the region's voltage range.	
٨,	Grounding	Frame and chassis grounding terminal	
4	Grounding	Protective grounding terminal	
<u></u>	Grounding	Measurement grounding terminal	
<u> </u>	OFF	Main power off	
	ON	Main power on	
Gerbannia.		Standby power supply: When the power switch is turned off,	
(h)	Power	this device is not completely disconnected from the AC power	
		supply.	
	Secondary electrical circuit connected to wall sockets through transformers		
CAT I	or similar equipment, such as electronic instruments and electronic		
	equipment; electronic equipment with protective measures, and any		
	high-voltage and low-voltage circuits, such as the copier in the office.		
	Primary electrical circuit of the electrical equipment connected to the indoor		
	socket via the power cord, such as mobile tools, home appliances, etc.		
CAT II	Household appliances, portable tools (e.g., electric drill), household sockets,		
	sockets more than 10 meters away from CAT III circuit or sockets more than		
20 meters away from CAT IV circuit.		vay from CAT IV circuit.	
	Primary circuit of large equipment directly connected to the distribution		
	board and circuit between the distribution board and the socket (three-phase		
CAT III	distributor circuit includes a single commercial lighting circuit). Fixed		
CATIII	equipment, such as multi-phase motor and multi-phase fuse box; lighting		
	equipment and lines inside large buildings; machine tools and power		
	distribution boards at industrial sites (workshops).		
CAT IV	Three-phase	public power unit and outdoor power supply line equipment.	
	Equipment designed to "initial connection," such as power distribution		
	system of po	wer station, power instrument, front-end overload protection,	

OSEI Mariua		0133000A 3eti
	and any out	door transmission line.
C€	Certification	CE indicates a registered trademark of EU.
UK	Certification	UKCA indicates a registered trademark of United Kingdom.
	Certification	Conforms to UL STD 61010-1 and 61010-2-030. Certified to
Intertek 4007682		CSA STD C22.2 No.61010-1 and 61010-2-030.
		Do not place equipment and accessories in the trash. Items
A	Waste	must be properly disposed of in accordance with local
·—		regulations.
		This environment-friendly use period (EFUP) mark indicates
		that dangerous or toxic substances will not leak or cause
	EEUP	damage within this indicated time period. The environmentally
40	ELOP	friendly use period of this product is 40 years, during which it
		can be used safely. Upon expiration of this period, it should
		enter the recycling system.
Safety R	Requirements	
	Warning	
		Please connect this device to AC power supply with the power
		cable provided.
		The AC input voltage of the line reaches the rated value of this
Prepa	ration before use	device. See the product manual for specific rated value.
		The line voltage switch of this device matches the line voltage
		The line voltage of the line fuse of this device is correct.
		This device is not intended for measuring the main circuit.
		Please check all rated values and marking instructions on the
Check	all terminal rated	product to avoid fire and the impact of excessive current.
	values	Please consult the product manual for detailed rated values
		before connection.
		Users can only use the special power cord for the instrument
Use the power cord		approved by the local and state standards. Please check
	properly	whether the insulation layer of the cord is damaged, or the
property		cord is exposed, and test whether the cord is conductive. If the
		cord is damaged, please replace it before using the instrument.
Instrument Grounding		To avoid electric shock, the grounding conductor must be
		connected to the ground. This product is grounded through
		the grounding conductor of the power supply. Please be sure
		to ground this product before it is powered on.
AC power supply		Please use the AC power supply specified for this device.
		Please use the power cord approved by your country and
		confirm that the insulation layer is not damaged.

Electrostatic prevention	This device may be damaged by static electricity, so it should be tested in the anti-static area if possible. Before the power cable is connected to this device, the internal and external conductors should be grounded briefly to release static electricity. The protection grade of this device is 4 kV for contact discharge and 8 kV for air discharge. Measurement accessories designated as lower-grade, which are not applicable to main power supply measurement, CAT II,
Measurement accessories	CAT III, or CAT IV circuit measurement. Probe subassemblies and accessories within the range of IEC 61010-031 and current sensors within the range of IEC 61010-2-032 can meet its requirements.
Use the input / output port of this device properly	Please use the input / output ports provided by this device in a proper manner. Do not load any input signal at the output port of this device. Do not load any signal that does not reach the rated value at the input port of this device. The probe or other connection accessories should be effectively grounded to avoid product damage or abnormal function. Please refer to the product manual for the rated value of the input / output port of this device.
Power fuse	Please use a power fuse of exact specification. If the fuse needs to be replaced, it must be replaced with another one that meets the specified specifications by the maintenance personnel authorized by UNI-T.
Disassembly and cleaning	There are no components available for operators inside. Do not remove the protective cover. Qualified personnel must conduct maintenance.
Service environment	This device should be used indoors in a clean and dry environment with ambient temperature from 0 °C to +40 °C. Do not use this device in explosive, dusty, or high humidity conditions.
Do not operate in humid	Do not use this device in a humid environment to avoid the risk
environment	of internal short circuit or electric shock.
Do not operate in	Do not use this device in a flammable and explosive
flammable and explosive	environment to avoid product damage or personal injury.
environment	
Caution	
Abnormality	If this device may be faulty, please contact the authorized maintenance personnel of UNI-T for testing. Any maintenance,

Instruments.uni-trend.com 6 / 92

adjustment or parts replacement must be done by the relevant
personnel of UNI-T.
Do not block the ventilation holes at the side and back of this
device.
Do not allow any external objects to enter this device via
ventilation holes.
Please ensure adequate ventilation and leave a gap of at least
15 cm on both sides, front and back of this device.
Please transport this device safely to prevent it from sliding,
which may damage the buttons, knobs, or interfaces on the
instrument panel.
Insufficient ventilation will cause the device temperature to
rise, thus causing damage to this device. Please keep proper
ventilation during use, and regularly check the vents and fans.
Please take precautions to prevent dust or moisture in the air
affecting the performance of this device. Please keep the
product surface clean and dry.
The recommended calibration period is one year. Calibration

Environmental Requirements

This instrument is suitable for the following environment:

- Indoor use
- Pollution degree: Class 2
- For overvoltage: This product should be powered from a mains supply that complies with Overvoltage Category II, which is a typical requirement for connecting equipment via power cords and plugs.
- Operating: Altitude below 3,000 meters; non-operating: Altitude below 15,000 meters.
- Unless otherwise specified, operating temperature is 0 to +40°C; storage temperature is -20 to +70°C.
- Operating: Humidity at temperature below to +35°C, ≤90% RH.; non-operating: Humidity at temperature from +35°C to +40°C, ≤60% RH.

There are ventilation opening on the rear panel and side panel of the instrument. So please keep the air flowing through the vents of the instrument housing. To prevent excessive dust from blocking the vents, please clean the instrument housing regularly. The housing is not waterproof, please

Instruments.uni-trend.com 7 / 92

disconnect the power supply first and then wipe the housing with a dry cloth or a slightly moistened soft cloth

Connecting Power Supply

The specification of AC power supply that can input as the following table.

Voltage Range	Frequency
100-240 VAC (Fluctuations ± 10%)	50/60 Hz
100-120 VAC (Fluctuations ± 10%)	400 Hz

Please use the attached power cord to connect to the power port.

Connecting to service cable

This instrument is a Class I safety product. The supplied power lead has good performance in terms of case ground. This signal analyzer is equipped with a three-prong power cable that meets international safety standards. It provides good case grounding performance for the specification of your country or region.

Please install AC power cable as follows.

- Ensure the power cable is in good condition.
- Leave enough space to connect the power cord.
- Plug the attached three-prong power cable into a well-grounded power socket.

Electrostatic Protection

Electrostatic discharge may cause damage to component. Components can be damaged invisibly by electrostatic discharge during transportation, storage and use.

The following measure can reduce the damage of electrostatic discharge.

- Testing in anti-static area as far as possible.
- Before connecting the power cable to the instrument, inner and outer conductors of the instrument should be briefly grounded to discharge static electricity.

Ensure all the instruments are properly grounded to prevent the accumulation of static.

1. Overview

- UTS5000A
- Front Panel
- User Interface
- Rear Panel

This chapter describes the main functions and features of UTS5000A series signal analyzer, and gives a brief introduction to keys and icons on the front and rear panel.

UTS5000A

UTS5000A series is a signal analyzer with a frequency range of 9 kHz to 26.5 GHz, which can be used as the main equipment to set up an automatic control system, and it can also meet your different testing and application needs in the test systems required for corporate R&D, factory production, and educational research.

Main Features

- System: Windows 10 or later operating systems
- Frequency range: 9 kHz-26.5 GHz
- Displayed average noise level (DANL): as low as -163 dBm -163 dBm (typical value)
- Phase noise: as low as -107 dBc/Hz (1 GHz, 10 kHz offset)
- Sweep points: Up to 100,001
- Minimum resolution bandwidth: 1 Hz
- Pass/Fail test for trace signal
- Up to 6 traces displayed simultaneously
- Advanced one-key measurement (option)
- EMI pre-sweep analysis function (option)
- Analog demodulation analysis (option)
- Digital demodulation analysis (option)
- I/Q analysis (option)
- 15.6-inch 1920×1080 TFT LCD
- Multiple interfaces: Keyboard, mouse, storage, upper computer, remote control, Web control,
 multi-device synchronization, demonstration monitoring, and audio alerts

Instruments.uni-trend.com 9 / 92

Front Panel

Figure 1-1 Front Panel

- 1. Display screen: Display area, touch screen
- **2. Advanced function key:** Used to activate advanced measurement functions of the signal analyzer, including:
 - **Advanced measurement:** Access a menu of functions for measuring transmitter power, such as adjacent channel power, occupied bandwidth, and harmonic distortion.
 - **Mode:** Select the measurement mode for the signal analyzer.
 - **Auto-tune:** Automatically searches for the signal and centers it on the display.
- **3. Measurement:** Used to activate the main functions of the signal analyzer, including:
 - **Frequency (FREQ):** Press this key to enable the center frequency function and enter the frequency setup menu
 - **Amplitude (AMPT):** Press this key to enable the reference level function and enter amplitude setup menu.
 - **Bandwidth (BW):** Press this key to enable the resolution bandwidth function and enter control bandwidth and scaling menu

Instruments.uni-trend.com 10 / 92

Sweep: Opens the sweep menu to configure the scan (sweep) time of the signal analyzer.

- **Trigger:** Opens the trigger menu to configure trigger setup, trigger type, and trigger parameters.
- **Trace:** Opens the trace control menu to configure detection mode and trace operation.
- Marker: Used to select marked number, type, attributes, tagging options, and list view; also controls the display of these marks.
- **Peak:** Places a marker at the peak amplitude of the signal and enables control over its associated functions.
- **Measurement setting:** Configures average/hold time, average type, display line, and limit values.
- **Single:** Press this key to perform single sweep; press again to return to continuous sweep mode.
- **Reset (Default):** Press this key to reset the signal analyzer settings to factory default parameters.
- **4. Utility (function key):** Used to activate the main functions of signal analyzer, including:
 - **System information (System):** Access the system menu to configure system parameters.
 - **File System (File):** Opens the file manager where users can view, create, modify, or delete files. Files such as corrections, limits, measurement results, screenshots, traces, and status logs can be stored in internal or external memory and recalled when needed.
 - **File storage (Save/Recall):** Press this key to enter save menu, the types of files includes state, trace line + state, measurement data, limit, correction, and export data.
 - **Touch/Lock:** Toggles the touchscreen function. The key illuminates green when activated.
- **5. Data control key:** Direction key, rotary knob and numerical key are used to adjust the numerical value of the activated function, such as center frequency, start frequency, resolution bandwidth and maker position.

Note

Esc key: If the instrument is in remote control mode, press this key to return to local mode.

6. Radio Frequency input terminal (RF input 50 Ω): Used to connect the external input signal, the input impedance is 50 Ω (NMD2.92 male-head).

Warning

It is forbidden to load the input port with a signal that does not meet the rated value, and ensure that the probe or other connected accessories are effectively grounded

Instruments.uni-trend.com 11 / 92

to avoid equipment damage or abnormal function. RF IN port can only withstand an input signal power of no more than +27 dBm or a DC voltage input of 16 V.

Warning

It is forbidden to load input signals on the output port to avoid damage or abnormal function.

- 7. Headphone jack: 3.5 mm
- **8. USB 3.0 port:** Used to connect external USB, keyboard, and mouse.
- **9. ON/OFF Switch:** Short press to power on the signal analyzer. When the instrument is already on, a short press will place it into standby mode, during which all functions are disabled.

User Interface

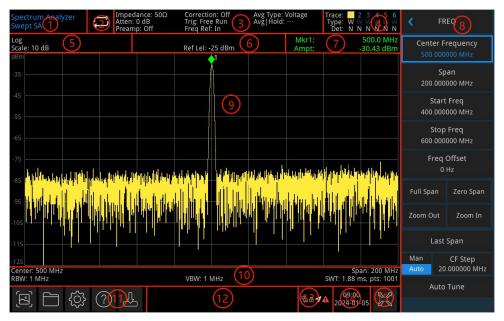


Figure 1-2 User Interface

- **1. Working mode:** Spectral analysis, EMI, analog demodulation, vector signal analysis, IQ analyzer, phase noise analyzer, LTE FDD, LTE TDD, and NR.
- 2. **Sweep/Measuring:** Single/continuous mode. Tap the screen icon to quickly toggle between the two modes.
- **3. Measurement menu:** Displays the measurement information, including input impedance, input attenuation, presetting, correction, trigger type, reference frequency, average type, and average/hold. Tap the screen icon to quickly access and switch these functions.
- **4. Trace indicator:** Displays the information of trace and detector, including trace serial number, trace type, and detector type.

Instruments.uni-trend.com 12 / 92

Note

The first line displays the number of trace line, and the color of number matches the color of the corresponding trace on the screen for easy identification. The second line shows the trace type, including W (refresh), A (average trace), M (the maximum hold), m (the minimum hold). The third line indicates the detector type, including S (sampling detection), P (peak value), p (negative value), N (normal detection), A (average), f (trace operation). All detection type are displayed in white letters.

Tap screen icon to quickly switch different modes, different letter presents different mode.

- Letter in highlight white: Indicates the trace is currently being updated and displayed.
- Letter in grey: Indicates the trace is not being updated.
- Letter in grey with strikethrough: Indicates the trace is neither updated nor displayed.
- Letter in white with strikethrough: Indicates the trace is being updated but not displayed.

 This case is useful for trace mathematical operation.
- **5. Display scale:** Displays the scale value and scale type (logarithm, linear). In linear mode, the scale value cannot be changed.
- 6. Reference Level: Displays the reference level value and reference level offset value.
- **7. Result of cursor measurement:** Displays the cursor measurement results, including frequency and amplitude. In zero span mode, the time is displayed instead of frequency.
- **8. Panel Menu:** Menu and function, including frequency, amplitude, bandwidth, trace, and marker.
- **9. Grid display area:** Displays trace display, marker, video triggering level, display line, threshold line, cursor table, and peak list.
- **10. Data display:** Displays center frequency value, sweep width, start frequency, cut-off frequency, frequency offset, RBW, VBW, sweep time, and sweep count
- 11. Function setting: Quick screenshot, file system, setup system, help system, and file storage.
 - Quick screenshot : Saves a screenshot to the default file. If an external storage device is connected, the screenshot is saved there by default.
 - File system Allows saving of corrections, limits, measurement results, screenshots, traces, status, and other data to internal or external storage. Saved files can be recalled for later use.
 - System information Displays the basic and option information.
 - Help system ②: Opens user guidance and help documentation.
 - File storage ♣: Import or export state, trace + state, measurement data, limit value, and correction files.

Instruments.uni-trend.com 13 / 92

12. System log dialog box: Click the blank space on the right of file storage to enter system log to check the operation log. This dialog provides access to operation logs, alarm messages, prompt and hint information.

- **13. Connection type:** Displays the connection status of mouse, USB, and screen lock.
- **14. Date and time:** Displays the date and time.
- **15. Full screen switch:** Toggles full screen mode. The display is horizontally stretched. The right-side control panel is automatically hidden for maximum viewing area.

Rear Panel

Figure 1-3 Rear Panel

- 1. USB 2.0 port: Used to connect USB, keyboard, and mouse
- 2. HDMI port: HDMI connector
- **3. LAN port:** TCP/IP port for connecting remote control
- **4. USB Device port:** This interface allows the signal analyzer to connect to a PC. Once connected, the analyzer can be remotely controlled using dedicated software on the computer.
- **5. Ext 1:** When using the external trigger mode, this BNC connector receives the rising or falling edge of an external trigger signal. The signal is fed into the analyzer via a BNC cable, enabling precise synchronization with external events.

Instruments.uni-trend.com 14 / 92

Warning

It is forbidden to load the input port with a signal that does not meet the rated value, and ensure that the probe or other connected accessories are effectively grounded to avoid equipment damage or abnormal function.

- **6. 10 MHz reference input:** The signal analyzer supports both internal and external 10 MHz reference sources.
 - When a 10 MHz clock signal is detected at the [10 MHz IN] connector from an external source, the analyzer automatically switches to use it as the external reference. The user interface will display "Frequency reference: external". When the external reference source is lost, overrun, or disconnected, the analyzer automatically reverts to the internal reference, and the user interface will display "Frequency Reference: Internal".

Warning

It is forbidden to load the input port with a signal that does not meet the rated value, and ensure that the probe or other connected accessories are effectively grounded to avoid equipment damage or abnormal function.

7. Ext 2: When the signal analyzer operates in the external trigger mode, the [Ext 2] connector receives the rising or falling edge of an external trigger signal. This signal is input into the analyzer via a BNC cable, enabling precise synchronization with external events.

Warning

It is forbidden to load the input port with a signal that does not meet the rated value, and ensure that the probe or other connected accessories are effectively grounded to avoid equipment damage or abnormal function.

- **8. 10 MHz reference output:** The signal analyzer can operate using either an internal or external reference source.
 - When using the internal reference, the [10 MHz OUT] connector outputs a 10 MHz clock signal generated by the analyzer's internal reference. This signal can be used to synchronize other external devices, ensuring consistent timing across instruments.

Warning

It is forbidden to load the input signal on the output port to avoid equipment damage or abnormal function.

- **9. Ground connector:** Provides an electrical ground connection point for connecting an antistatic wrist strap. This helps prevent electrostatic discharge (ESD) damage when handling or connecting the Device Under Test (DUT).
- 10. Power Switch: Used to turn on/off the AC power supply. When the switch is turned on, the

Instruments.uni-trend.com 15 / 92

signal analyzer enters the standby mode while the indicator on the front panel lights up.

11. Fuse holder: Allows for fuse replacement. The instrument supports a fuse rated at 250 VAC, T6.3A, with a breaking capacity of 35 A or higher.

- **12. Power port:** Connecting the AC power supply.
- **13. Burglar-proof Lock:** Designed to prevent theft of the instrument.
- **14. Dustproof cover:** Protects the ports and interfaces from dust. Remove the cover before cleaning or accessing connections.
- 15. Handle: A convenient handle for carrying or repositioning the signal analyzer.

Instruments.uni-trend.com 16 / 92

2. User Guide

- Inspecting Package and Packing List
- Safety Requirements
- Environmental Requirements
- Connecting Power Supply
- Electrostatic Protection
- Preparatory Work
- Usage Tip
- Tousch Operation
- Remote Control
- Help Information
- Operation Mode

This chapter describes the safety instructions and basic information about the use of signal analyzer.

Inspecting Packing List

When you receive the instrument, please check the packaging and list by the following steps.

- Check whether the packing box and padding material have been compressed or damaged by external forces and inspect the appearance of the instrument. If you have any questions about the product or need consulting services, please contact the distributor or local office.
 If you have any questions about the product or other problems, please contact the distributor or the local office.
- Carefully take out the article and check it with the packing instructions.

Preparatory Work

1. Connect the power cable and insert the power plug into protective grounding outlet; use the tilt

Instruments.uni-trend.com 17 / 92

adjustment bracket as needed for your viewing.

Figure 2-1 Tilt Adjustment

- 2. Press the switch on the rear panel, the signal analyzer will enter standby mode.
- 3. Press the soft switch on the front panel, indicator illuminates with green, which means the signal analyzer is powered on.

The signal analyzer takes approximately 30 seconds to complete initialization and then enters the system's default menu mode. For optimal performance, it is recommended to allow the instrument to warm up for 45 minutes after powering on.

Usage Tip

Use External Reference Signal

If user want to use an external signal source 10 MHz as reference, please connect signal source to the 10 MHz In port on the rear panel. The measuring menu at the top of the screen will indicate **Reference Frequency: External**.

Activate the Option

If user want to activate the option, you need to input secret key of the option. Please contact UNI-T office to purchase it.

Refer to the following steps to activate the option you have purchased.

- 1. Save the secret key into USB and then insert it to signal analyzer
- 2. Press [System] key > System Information > Add token
- 3. Select purchased secret key and then press **[ENTER]** to confirm

Firmware Upgrade

After downloading the firmware upgrade package from the official website, please refer to the following steps to upgrade.

 Extract the upgrade package to the root directory of the USB, including a file: SignalAnalyzerSetup.exe, as shown below.

Instruments.uni-trend.com 18 / 92

SignalAnalyzerSetup.exe

Figure 2-2 Upgrade Package

2. Plug USB into USB port on the front panel, and turn on USB (on computer) -> Upgrade Package -> Select the file of SignalAnalyzerSetup.exe, double click to open the upgrade file, confirm that the environment is meet, click "Next step", set the installation directory, click "Install".

3. The upgrade process may need several minutes, reboot the program when the upgrade is complete.

Note

Use a FAT32 format USB flash drive to copy the upgrade package, keep the power supply on during the upgrade process, keep the USB flash drive stable, and don't do any other operations to prevent the upgrade from failing and causing the device to not work properly.

Touch Operation

The signal analyzer features a 15.6-inch multi-point touchscreen that supports various gesture-based operations, including:

- Tap the top-right corner of the screen to open the main menu.
- Slide up/down, left/right in waveform area to change the X-axis center frequency or Y-axis reference level.
- Pinch or spread two fingers in the waveform area to zoom in or out on the X-axis sweep width.
- Tap parameter or menu on the screen to select and edit it.
- Enable and move cursors as needed.
- Use auxiliary shortcut keys to perform common operations efficiently.

Use **[Touch Lock]** to turn on/off touch screen function.

Remote Control

The UTS5000A series signal analyzers support communication with computers via USB and LAN interfaces. Through these interfaces, users can combine the corresponding programming language or NI-VISA, using the SCPI (Standard Commands for Programmable Instruments) command to remotely program and control the instrument, as well as interoperate with other programmable instruments that support the SCPI command set.

For more information about the installation, remote control and programming, please refer to *UTS5000A Series Programming Manual* on official site http:// www.uni-trend.com.

Instruments.uni-trend.com 19 / 92

Help Information

The signal analyzer's built-in help system provides help information for each function button and menu control key on the front panel.

■ Touch the left of the screen ②, help dialog box will pop out on the center of the screen. Tap support function to get more detailed help description.

■ When help information displayed on the center of the screen, tap "x" or other key to close the dialog box.

Operation Mode

The signal analyzer provides several operating modes, which can be selected by the Mode key.

- Spectral analysis, the detail refers to Chapter 4
- Vector signal analysis
- EMI
- Analog demodulation
- IQ analysis
- Phase Noise Analyzer
- LTE FDD
- LTE TDD
- NR
- Reset mode

The vector signal analysis, analog demodulation, phase noise analyzer, LTE FDD, LTE TDD, NR, IQ analysis, and EMI are optional features that require separate activation through license purchase. Note that the key functions on the front panel may vary depending on the selected operating mode.

Reset mode: Each operating mode has its own independent reset configuration.

Instruments.uni-trend.com 20 / 92

3. Function and Application

- Basic Measurement
- Measuring Multiple Signals
- Measuring Low Level Signal
- Measuring Frequency Shift of Signal Source
- Measuring Signal Distortion
- Measuring Phase Noise
- Checking Catalogue and Storage File

This chapter introduces the main functions of this signal analyzer and how to make basic measurements. In this chapter, we assume that you are familiar with the layout of the front and rear panels of the instrument, as well as the notes on the display screen; if you are not familiar with these, please refer to the "Front Panel".

Basic Measurement

In this manual, keys label with [1], such as [FREQ], [AMPT], and [Marker], these are physical keys on the front panel. In most cases, pressing such a key will access a menu of functions that are displayed on the right side of the screen, such as center frequency and reference level, and these are referred to as panel menu.

Using Front Panel

This section describes how to use the basic function of signal analyzer.

Input Data

There are several common ways to edit data input when you need to input parameter value.

Rotary Knob	Increase or decrease the current value.
Arrow Key	Increase or decrease the current value.

Instruments.uni-trend.com 21 / 92

Numeric Key	Input the numerical value and confirm (select a virtual key "ENTER" or press the physical button [Enter] to confirm).
Virtual Key	Tap the panel menu to pop out the dialog box and touch to input the numerical value and confirm (select a virtual key "ENTER" or press the physical button [Enter] to confirm).
Enter Key	If the input value does not include a unit, or if you want to set a default unit for input values, press the [Enter] key to setup.
Using Front Panel	Press the panel menu (arranged vertically on the right side of the screen) to enter the corresponding function item. The following are examples of panel menu.
Switching Man Auto	Press this panel menu to switch manual/auto modes.
Submenu	Press this panel menu to enter the submenu.
Select Center Frequency 1.00000000 GHz	Tap this option to change the data, the selected menu will be highlight.
Edit	Double click to pop out the edit menu or users can select the data menu and press the "Enter" key to edit.

Reset Signal Analyzer

There are three reset methods for restoring the system setting to the specified state.

Press [System]>Select Reset mode.

When the setting is selected, the system setting of signal analyzer will restore to the default state.

When the data is selected, the saved data of the signal analyzer will all be deleted.

When "All" is selected, set all setting to the default state and delete the user data.

Observing Signal

Observing a simple signal as following steps

- 1. Press the **[Default]** key to restore the signal analyzer to factory settings.
- 2. Connect 10 MHz OUT port on the rear panel to RF IN port on the front panel.

Set the reference level and center frequency

- 1. Press [AMPT]>20 dBm to set the reference level to 20 dBm.
- 2. Press [FRQE]>Center Frequency >50 MHz to set the center frequency to 50 MHz.

Instruments.uni-trend.com 22 / 92

Set the sweep width

Press [FRQE]>Sweep Width >100 MHz to set the sweep width to 100 MHz.

Note

Changing the reference level will change the amplitude value of the top grid line, changing the center frequency will change the horizontal position of the signal on the screen, and increasing the sweep width will increase the frequency range that can be displayed horizontally on the screen.

Read frequency and amplitude value

Press [Peak] to place a marker at the peak of 10 MHz (default: Marker 1).

Note

The frequency and amplitude value of this marker will display at the function area on the right top of the screen.

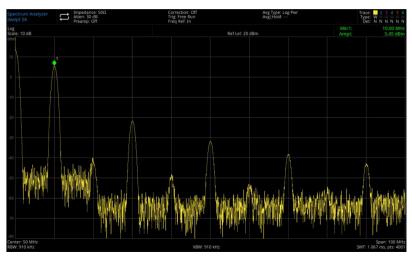


Figure 3-1 Read Frequency and Amplitude

Using the rotary knob, arrow keys or panel menu on the **[Peak]** menu to move the marker.

Change the reference level

- 1. Press [AMPT], please note that the reference level (Ref Level) is at the activated area function.
- 2. Press [Marker]> Marker→> Reference Level

Note

Changing the reference level will change the amplitude value of the top grid line.

Measuring Multiple Signal

This section introduces how to measure multiple signals of different type.

Using difference value marker Δ to compare the signal on the same screen

With this signal analyzer, users can easily compare frequency and amplitude differences between signals, and the signal analyzer's difference value Δ marker feature allows you to compare two signals on the same screen.

In this example, the harmonic component of the 10 MHz reference signal provided on the rear panel of the signal analyzer is used to measure the frequency and amplitude difference between the two signals on the same screen, and the Delta markers are used to show this difference.

1. Reset the signal analyzer.

Press [Default] > Reset

- 2. Connect 10 MHz OUT port on the rear panel to RF IN port on the front panel.
- 3. Set the center frequency, sweep bandwidth and reference level of signal analyzer for checking the input signal of 10 MHz and its harmonic.

Press [FREQ]> Center Frequency> 50 MHz

Press [FREQ] > Sweep Bandwidth > 100 MHz

Press [FREQ] > Reference Level > 20 dBm

4. Place a marker at the maximum peak (10 MHz).

Press [Peak] Next Peak on the Left and Next Peak on the Right on the panel menu to move the marker between peaks.

The marker should be at the reference signal of 10 MHz.

5. Lock a marker and activate the second marker.

Press [Marker] > Mark Mode > Difference value Δ

If a marker has labeled with x, it indicates this is a reference signal.

6. Use the rotary knob or the **[Peak]** key to move the marker **1Δ2** to the peak of the other signal.

Press [Peak] Next peak or [Peak] Next Peak on the Left or Next Peak on the Right or press [Marker] > Marker Δ Frequency > Rotating the rotary knob to next peak. The amplitude and frequency difference between the two markers is displayed on the screen.

Instruments.uni-trend.com 24 / 92

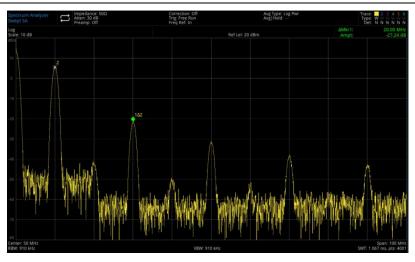


Figure 3-2 Difference Value Δ (Marker Mode) Signal Comparison on the Same Screen

Note

Turn on the frequency meter to increase the resolution of marker reading.

Using Delta marker to compare the signal on different screen

Using the Delta mark function to measure the difference in frequency and amplitude between two signals that are not on the same screen (this function is suitable for measuring harmonic distortion).

In this example, the amplitude and frequency difference between a signal displayed on the screen and a signal not displayed on the screen is measured by using a 10 MHz signal of the signal analyzer, and Delta markers are used to show this difference.

1. Reset the signal analyzer.

Press [Default] > Reset

- 2. Connect 10 MHz OUT port on the rear panel to RF IN port on the front panel.
- 3. Set the center frequency, sweep bandwidth and reference level of signal analyzer for checking the input signal of 10 MHz and its harmonic.

Press [FREQ]> Center Frequency> 50 MHz

Press [FREQ] > Sweep Bandwidth > 100 MHz

Press [FREQ]> Reference Level > 20 dBm

4. Place a marker at the maximum peak (10 MHz) and set the stepped center frequency to the frequency at the marker.

Press [Peak] > Marker > Stepped Center Frequency

5. Turn on the difference value Δ function

Press [Marker]> Mark Mode>Difference Value A

Instruments.uni-trend.com 25 / 92

6. Use the center frequency to increase 10 MHz.

Press [FREQ]>Center Frequency,

At this point, the first marker moves to the left side of the screen at the peak of the first signal (10 MHz) until the center frequency is 90 MHz. The frequency of Δ Mkr1 is 80 MHz, which is marker at the harmonic component of 90 MHz. The annotation of Δ Mkr1 displays the amplitude and frequency difference between the 10 MHz signal peak and the 90 MHz signal peak.

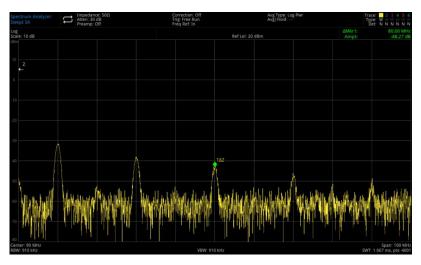


Figure 3-3 Delta Mark of Reference Signal Outside of Screen

7. Turn off the marker: Press [Marker] > Close all or [Marker] > Mark Mode > OFF.

Identifying the signal with the same amplitude

This example distinguishes two signals of the same amplitude and 100 kHz apart in frequency by reducing the resolution bandwidth and video bandwidth.

Note: The resolution bandwidth value ultimately chosen for resolving signals is equal to the frequency difference between the two input signals, while the video bandwidth is slightly narrower than the resolution bandwidth.

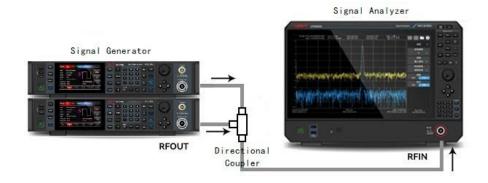


Figure 3-4 Instrument Setting for Acquiring Two-channel's Signal

Instruments.uni-trend.com 26 / 92

1. As shown in Figure 3-4, connecting two signal sources to the RF IN port of the signal analyzer via a directional coupler.

- 2. Set the frequency of one source to 300 MHz and the frequency of the other signal source to 300.1 MHz, set the amplitude of the two signal sources to 20 dBm and turn on the signal output.
- 3. Set the signal analyzer to observe the signal.

Press [Default] > Reset

Press [FREQ]> Center Frequency> 300 MHz, Sweep Width>1 MHz

Press [BW]> 100 kHz

At this time, users can see a single envelope signal.

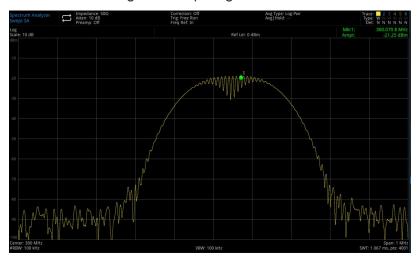


Figure 3-5 Two equi-amplitude signal are not distinguished

4. Set resolution bandwidth (RBW) to 30 kHz, adjust it to lower than or equal to the frequency interval of the two input signals.

Press [BW] > Resolution Bandwidth > 30 kHz

As shown in Figure 3-6, the peak of the two signals can be seen at the same time, and the resolution bandwidth can be further reduced by using the knobs or arrow keys on the front panel to better distinguish between the two signals.

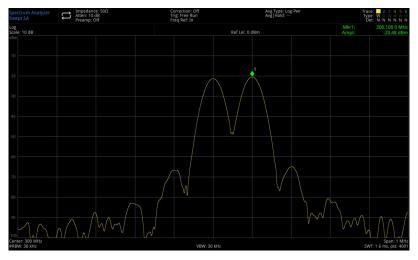


Figure 3-6 Two equi-amplitude signal are distinguished (1)

Instruments.uni-trend.com 27 / 92

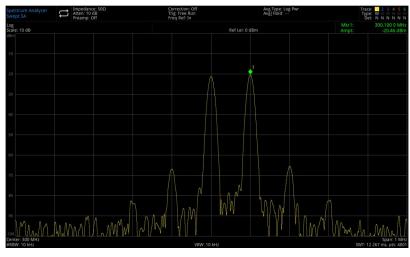


Figure 3-7 Two equi-amplitude signal are distinguished (2)

As the resolution decreases, the sweep time increases, and the displayed signal becomes smoother. For the fastest measurement, use the largest resolution bandwidth as far as possible, which is the resolution coupled to the sweep width at the factory setting.

Identifying the small signal hidden in the big signal

In this example, use a narrow resolution bandwidth to recognize between two signals with a frequency difference of 10 kHz and an amplitude difference of 50 dBm.

- 1. As shown in Figure 3-4, connecting two signal sources to the input port of the signal analyzer.
- 2. Set the frequency and amplitude of one signal source to 100 MHz and -10 dBm, and the other to 100.01 MHz and -60 dBm, and turn on the signal output.
- 3. Set the signal analyzer as the following steps.

Press [Default] > Reset

Press [FREQ]> Center Frequency> 100> MHz, Sweep Width> 200> kHz

Press [BW]> 30> kHz

4. Set the signal of 100 MHz to be reference level.

Press [Peak]>Marker→> Reference Level

Note

The UTS5000A filter has a shape factor of 4.1:1. When the resolution bandwidth is 30 kHz, its 60 dB bandwidth is 144 kHz. Half of this bandwidth (77 kHz) is greater than the frequency difference between the two signals (10 kHz), so the two input signals cannot be distinguished.

Instruments.uni-trend.com 28 / 92

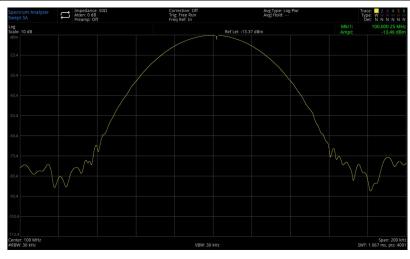


Figure 3-8 S A small signal is not distinguished from a large signal

5. Users can decrease the resolution bandwidth by checking the hidden small signal.

Press [BW]> 3 kHz

Press [Peak]

Press [Marker]>Mark Mode> Difference Value Δ

Press [Marker] > Mark frequency > 10 kHz

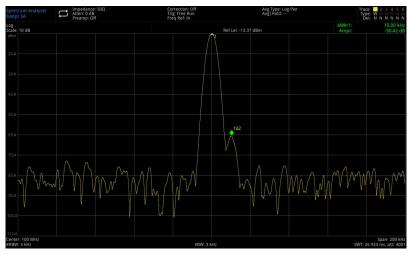


Figure 3-9 Recognize a small signal from a larger signal

Note

The UTS5000A filter has a shape factor of 4.1:1. When the resolution bandwidth is 3 kHz, its 60 dB bandwidth is 14.4 kHz. Half of this bandwidth (7.2 kHz) is greater than the frequency difference between the two signals (10 kHz), so the two input signals can be distinguished.

Measuring Low Level Signal

This section introduces how to measure a low level signal and how to distinguish it from spectral noise. The main methods used to measure low level signals are given below.

Instruments.uni-trend.com 29 / 92

Decreasing Input Loss

A signal analyzer's ability to measure low level signals is limited by the noise which generates internally. A signal as it passes through a signal analyzer, its level will be affected by the input attenuator, and if a signal is very close to the ground noise floor, reducing the input loss can distinguish the signal from the noise.

Caution

The RF IN port on the front panel can only withstand an input signal power of no more than +27 dBm or a DC voltage input of 16 V, otherwise the internal circuitry may be damaged and malfunction.

- 1. Press [Default]> Reset to restore the signal analyzer.
- 2. Set the frequency and amplitude of signal to 300 MHz, -80 dBm, connect RF OUT port of the signal source to the RF IN port of signal analyzer and turn on the signal output.

Figure 3-10 Instrument's Setting for Acquiring Single Signal

- 3. Set the center frequency, sweep bandwidth and reference level.
 - Press [FREQ] > Center Frequency > 300 MHz, Sweep Bandwidth > 5 MHz
 Press [AMPT] > Reference Level > -40 dBm
- 4. Move the selected peak (which is 300 MHz in this example) to the center of the screen.
 - Press [Peak]> Marker→> Center Frequency
- 5. Decrease the sweep bandwidth to 500 kHz (as shown in Figure 3-11).
 - Press [FREQ]> Sweep Bandwidth> 500> kHz
- 6. Set the attenuation to 20 dB.
 - Press [AMPT]> Input Attenuation> 20> dB

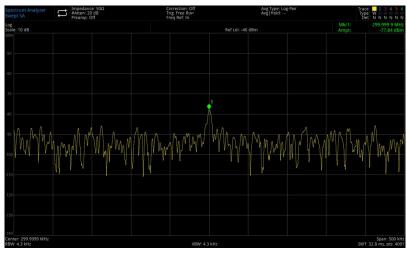


Figure 3-11 Signal Close to Ground Noise

Note

When the attenuation value is increased, it will make the ground noise close to the signal level.

7. To see the signal more clearly, set the attenuation to 0 dB.

Press [AMPT]> Attenuation> 0> dB

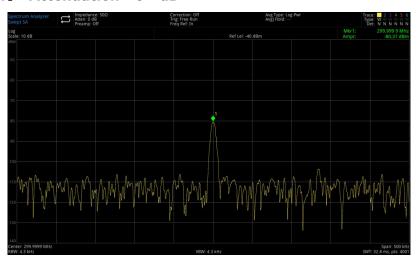


Figure 3-12 Measuring Small Signal in 0 dB Attenuation

Decreasing Resolution Bandwidth

The internal noise level is affected by the resolution bandwidth, but a signal with a continuous waveform is not affected by the resolution bandwidth. Reducing the RBW bandwidth by a factor of 10, the ground noise will reduce by 10 dB.

- 1. Refer to "Decreasing Input Loss" in this section and follow the steps to set.
- 2 Decrease the resolution bandwidth.

Press [BW] to select the resolution bandwidth

As the noise level decreases, the low level signal will become clearer at this point.

Instruments.uni-trend.com 31 / 92

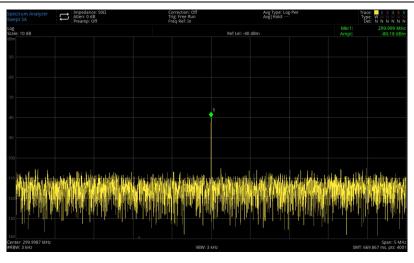


Figure 3-13 Decreasing Resolution Bandwidth

Note: There is a "#" symbol next to the RBW in the left bottom of the screen, indicating that the resolution bandwidth is uncoupled and manually adjusted.

Note

Users can change the resolution bandwidth of the signal analyzer by using the up and down arrow keys with a sequence of 1-3-10, its rectangularity factor (the ratio of the filter's 60 dB bandwidth and 3 dB bandwidth) is 4.1:1, and the maximum value of RBW is 3 MHz and the minimum value of RBW is 1 Hz.

Trace Average

Trace average is a digital process. When enabled, it calculates the average of each trace point by combining the current value with the previously averaged value. When the signal analyzer is set to automatic coupling, it is recommended to use the sampling detection mode to smooth the displayed noise level. This trace processing method is different from the average detection mode introduced earlier.

- 1. Refer to "Decreasing Input Loss" in this section and follow the steps to set.
- 2. Open the average function.

Press [Trace]>Trace Type>Trace Average

3. Set the average number to 20.

Press [Meas/Setup] > Average/Hold Number > 20 > =

Since the average operation make the trace become smooth, the low level signal will become more clearly visible (as shown in 3-14).

Instruments.uni-trend.com 32 / 92

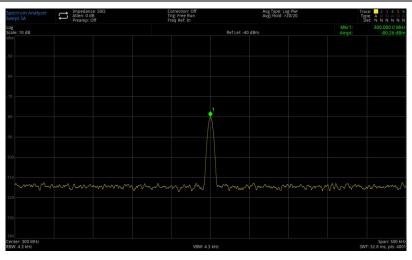


Figure 3-14 Trace Average

Tracing Drifting Signal

This section introduces how to measure and trace the drifting signal.

Measuring Frequency Drifting of Signal Source

This signal analyzer measures the stability of a signal source and using the maximum hold function, displays and holds the maximum amplitude level and its frequency drift of an input signal trace.

- 1. Connect the signal generator to the RF IN port of the signal analyzer.
- 2. Set the frequency and amplitude of output signal to 300 MHz, -20 dBm.
- 3. Set the center frequency of the signal analyzer, sweep width and reference level.

Press [Default] > Reset

Press [FREQ] > Center Frequency > 300 MHz, Sweep Bandwidth > 1 MHz
Press [AMPT] > Reference Level > -10 dBm

4. Place a marker at the peak of signal and turn on continuous peak search function.

Press [Peak]

5. Use the maximum hold to measure the drifting of signal.

Press [Trace] > Trace Type > Maximum Hold

When the signal

The maximum hold function is used to maintain the maximum response of the input signal when the signal changes, and the trace mode is shown in the annotation on the top right of the screen. It includes trace, trace type and detection.

6. Activate refresh trace 2 and set it to continuous sweep.

Press [Trace] > Select Trace > Trace 2

Press Trace Type > Refresh

Trace 1 stays at the maximum hold mode for displaying the drifting of signal.

Instruments.uni-trend.com 33 / 92

7. Slowly change the frequency of signal source.

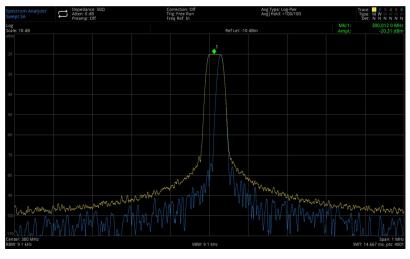


Figure 3-15 Observing Signal Drifting by Maximum Hold and Refresh

Measuring Signal Distortion

This section introduces how to recognize and measure the signal distortion.

Recognizing the distortion generated by the signal analyzer

A high level input signal may cause the signal analyzer to generate a distortion signal that masks the true distortion to be measured on the input signal. If the distortion is present, which a distortion is produced internally by the instrument. The user can use the trace and RF attenuator to recognize the signal. If there is In this example, use an output signal of signal generator to recognize whether the harmonic distortion component is generated by the signal analyzer.

- 1. Connect the signal generator to the RF IN port of the signal analyzer.
- 2. Set the frequency and amplitude of output signal to 200 MHz, 0 dBm.
- 3. Set the center frequency and sweep bandwidth of signal analyzer.

Press [Default] > Reset

Press [FREQ] > Center Frequency > 400 MHz, Sweep Bandwidth > 500 MHz

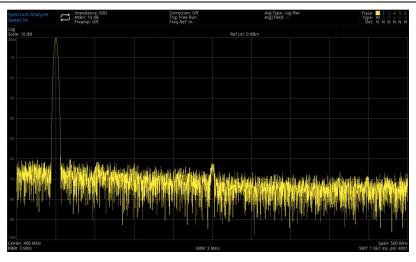


Figure 3-16 Harmonic Distortion

The harmonic distortion component generated by this signal at the input mixer of the signal analyzer (lined up in 200 MHz intervals with the original 200 MHz signal).

4. Set the center frequency to the frequency value of the first harmonic.

Press [Peak] > Next Peak

Press [Marker]> Maker→> Center Frequency

5. Set the sweep bandwidth to 50 MHz and redisplay the signal in the center of the screen.

Press [FREQ]> Sweep Bandwidth >50 MHz

Press [Peak]> Maker→> Center Frequency

6. Set the attenuation to 0 dB.

Press [AMPT] > Attenuation > 0d B

7. To recognize whether the harmonic distortion component is generated by the signal analyzer, display the input signal at the trace 2 at first.

Press [Trace] > Select Trace > Trace 2

Press [Trace] > Trace Type > Refresh

Press [Trace] > Refresh > ON

Press [Trace] > Display > ON

8. Refresh trace 2 (sweep two times at least) and save the data of trace 2, and then place a marker at the harmonic component of trace 2.

Press [Trace] > Refresh > OFF

Press [Peak]

Press [Marker] > Mark Mode > Difference Value Δ

At the current, the signal analyzer shows the waveform data stored in trace 2 and the data being measured in trace 1, Δ Mkr1 indicating a reading of the amplitude difference between the reference marker and the currently activate marker.

Instruments.uni-trend.com 35 / 92

9. Set the RF attenuation increase to 10 dB.

Press [AMPT] > Attenuation > 10dB

Note: ΔMkr1 indicating a reading, this reading is the difference amplitude of the harmonic distortion component when the input attenuation is set to 0 dB and 10 dB respectively.

If the absolute amplitude of Δ Mkr1 is approximately \geq 1 dB with a change in input attenuation, it can be assumed that at least part of this the harmonic distortion component is generated by the signal analyzer (as shown in Figure 3-17), in which case the input attenuation should be increased.

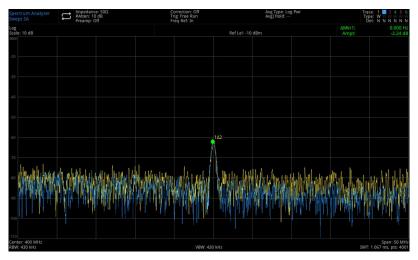


Figure 3-17 the harmonic distortion component

The amplitude difference readings of $\Delta Mkr1$ are affected by the following factors.

- 1. Increasing the input attenuation worsens the signal-to-noise ratio, resulting in a positive ΔMkr1 reading.
- 2. The loss of harmonics from the internal circuit of the signal analyzer results in a negative Δ Mkr1 reading.

A large $\Delta Mkr1$ reading indicates a significant test error and can be minimized by setting the input attenuation.

Third-order Intercept Point Distortion

Measurements of two-tone third-order intercept point distortion are common in communication systems. When two signals are fed into a nonlinear system, they may produce third-order intercept point components (TOI) on the frequency spectrum which proximate to the original signals due to their interaction, and these distortions are generated by system components such as amplifiers and mixers.

To quickly set up a TOI measurement, see "Third-order intercept point" under one-key measurements.

This example introduces how to make a third-order intercept point distortion of one instrument, the frequency of the two signal sources used were 299.95 and 300.05 MHz.

Instruments.uni-trend.com 36 / 92

1. Connect the instrument as shown in Figure 3-18, the two signal generators are connected to the input of a directional coupler through a low-pass filter, and the output of the coupler is a two-tone signal source with very low intermodulation distortion. Although the distortion performance of this connection is better than that of the signal analyzer, it is still useful to measure the TOI of the source/signal analyzer combination. After calibrating the TOI performance of the source/signal analyzer combination, the instrument under test (DUT) (e.g., an amplifier) is inserted between the output of the directional coupler and the input of the signal analyzer.

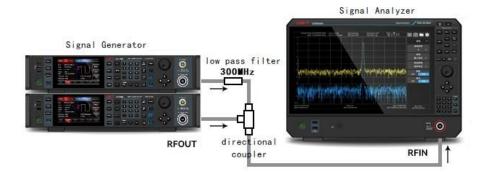


Figure 3-18 Instrument's Setting of Third-order Intercept Point Signal

Note

Directional couplers must have a high degree of isolation between the two inputs so that the two source signals are not intermodulation.

- 2. Set the frequency of one signal source (signal generator) to 299.95 MHz and the frequency of the other signal source to 300.05 MHz, so that the frequency interval is 100 kHz, and the amplitude of the two sources is set to the same value (in this case, the amplitude is set to -5 dBm).
- 3. Set the center frequency and sweep bandwidth of the signal analyzer.

Press [Default] > Reset

Press [FREQ] > Center Frequency > 300 > MHz, Sweep Bandwidth > 500 kHz

4. Decrease the resolution bandwidth until to see the distortion product.

Press [BW]> Rotating Rotary Knob

5. Move the signal to the reference level.

Press [Peak]> Marker→>→Reference Level

6. Decrease the resolution bandwidth until to see the distortion.

Press [BW]> Rotating Rotary Knob

7. Activate the second marker and move the next peak to the peak of distortion signal.

Press [Marker] > Mark Mode > Difference Value A

Press [Peak] > Next Peak

8. Measure another distortion signal.

Press [Marker] > Mark Mode > Normal

Press [Peak] > Next Peak

9. Measure the difference between this measured signal and the second distortion signal.

Press [Marker] > Mark Mode > Difference Value Δ

Press [Peak] > Next Peak

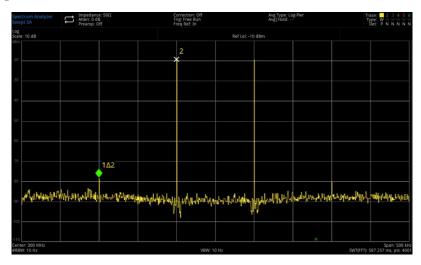


Figure 3-19 Measure Distortion Product

Measuring Phase Noise

The phase noise measurement measures signal stability in the frequency domain. Phase noise is defined as the single-sideband (SSB) noise power relative to the carrier frequency, measured at various frequency offsets and normalized to a 1 Hz bandwidth.

- 1. Press [Default] to reset the signal analyzer
- 2. Connect the output of the signal generator to the RF IN port of the signal analyzer with a cable
- 3. Press [FREQ] > Center Frequency > 1 GHz, Sweep Bandwidth > 100 kHz
- 4. Press [Trace] > Trace Type > Trace Average; Detection > Average
- 5. Press [Peak] to place a marker at the peak of signal
- 6. Press [Marker] > Mark Mode > Difference value Δ ; Mark Δ Frequency > 10 kHz
- 7. Open Mark Function > Mark Noise as shown in Figure 3-20

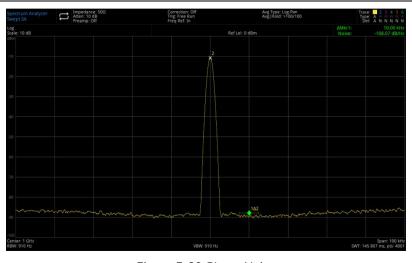


Figure 3-20 Phase Noise

Checking Catalogue and Saved File

This signal analyzer stores and retrieves data similarly to a personal computer, featuring both internal memory and USB flash drive support. You can view and save files either in the internal memory or on the USB flash drive. This section explains how to save files and navigate directories.

Find File in Catalogue

Tap the icon at the left bottom of the screen: find the file in the file folder

This signal analyzer contains six types of files:

State: Saves the instrument setting and the file suffix is .state.

Trace + State: Saves the trace and the file suffix is .trace.

Limits: Contains limit test settings to verify whether traces exceed preset thresholds. The file suffix is .limit.

Correction: Stores amplitude correction settings used to compensate for gain or loss of external devices. The file suffix is .corr.

Measurement data: Saves trace data, peak lists, or marker lists. The file suffix is .csv.

New File Folder

Create a new file folder.

- Press > LocalDisk > UTS5026A to select the catalogue of file folder.
- 2. Tap "New File Folder" to create a new file folder.

Multiple Choice (ON/OFF)

- 1. Press > LocalDisk > UTS5026A or select USB
- 2. Open "Multiple Choice" menu.

3. Select multiple files or folders, tick ✓ in front of each file or folder name in the dialog box.

Copy

If you need to copy files from the internal memory to a USB flash drive, please refer to the following steps.

- 1. Press > LocalDisk > UTS5026A to select the file or file folder.
- 2. Insert a USB to the USB port on the instrument.
- 3. Select the file and tap "Copy" on the screen.
- 4. Select the copied catalogue and tap "Paste" to complete the copy operation of file.

Move

If you need to move files, file folders or move to a USB flash drive, please refer to the following steps.

- 1. Press > LocalDisk > UTS5026A to select the file or file folder.
- 2. Select the file and tap "Move" on the screen, the system automatically pops up a dialog box
- 3. Move the file or file folder to a USB, insert the USB flash drive to the USB port located on the instrument, and then pull down the LocalDisk menu to select the USB as the destination path.

Note

When moving files to external memory (USB), do not disconnect the USB device during the saving process to prevent unnecessary data loss and file corruption.

Delete

- 1. Press > LocalDisk > UTS5026A select the file or file folder to be deleted.
- 2. Tap "Delete" on the panel menu to delete the selected file.
- 3. Open the "Multiple Choices" and tick ✓ in the dialog box in front of the file name to select multiple files.
- 4. Tap "Delete" on the panel menu to delete multiple files.

Load

- 1. Press > LocalDisk > UTS5026A to select the file.
- 2. Tap "Load" to load the data of file, including state, trace, screen display, and limit settings.

Rename

Rename the file or file folder.

Instruments.uni-trend.com 40 / 92

1. Press > LocalDisk > UTS5026A to select the file or file folder to be renamed.

2. Select "Rename" to change the name of file or file folder.

Import/Export File

Export/import the file according to the current export status type.

Available file types includes contains state, trace + state, measurement data, limits, and correction.

If an external memory exists, it will be preferentially saved to external storage.

For detailed operation steps, please refer to the "File Storage (Save)" section.

Calibration

Tap the panel menu to extend the menu to select the calibration function to open the calibration menu and other function item, which includes calibration signal, automatic calibration, and instant calibration.

Calibration signal: This function is used to verify whether the instrument can detect a signal. When no external signal is connected, enabling the calibration signal will automatically generate a 50 MHz sine wave. This signal should appear on the spectrogram.

Automatic calibration: Turn on/off automatic calibration. When the automatic calibration is enabled, the device performs periodic self-calibration using an internal calibration source to maintain accuracy during normal operation.

Instant calibration: Immediately performs a self-calibration using the internal calibration source when this option is selected.

Instruments.uni-trend.com 41 / 92

4. Key Function (Spectral Analysis)

- Frequency (FREQ)
- Amplitude (AMPT)
- Bandwidth (BW)
- Sweep
- Trigger
- Trace
- Marker
- Peak
- Measurement Setup (Meas/Setup)
- Single
- Default Setup (Default)
- System Setup (System)
- File System (File)
- File Storage (Save/Recall)
- Touch/ Lock Screen
- Mode (Mode/Meas)
- Automatic Tuning (Auto)

Note

The key is used to switch the scanning mode of the signal analyzer spectrum.

Frequency (FREQ)

Press the **[FREQ]** key to activate the center frequency function and enter the frequency menu. The numerical values of center frequency, sweep bandwidth start frequency, and cut-off frequency are displayed at the bottom of the screen.

Center frequency: Activating the center frequency sets a specific frequency at the center of

Instruments.uni-trend.com 42 / 92

the screen's horizontal axis. The center frequency and sweep bandwidth are displayed on the left and right sides of the bottom grid, respectively. Users can adjust the center frequency using the numeric keypad, rotary knob, arrow keys, or by touching the panel menu.

Note

- Modifying the center frequency will automatically modify the start frequency and cut-off frequency while keeping the sweep bandwidth unchanged.
- Modifying the center frequency is equivalent to panning the current channel, the adjustable range is limited by the frequency range listed in the signal analyzer specifications.
- In the zero sweep bandwidth mode, the value of start frequency, cut-off frequency and center frequency are the same.

Sweep bandwidth: Used to input the range value of sweep bandwidth. The user can change the sweep bandwidth by using the numeric key, rotary knob and arrow key or touch the panel menu. The sweep bandwidth will be symmetrically changed according to the center frequency. The reading of sweep bandwidth is the total displayed frequency range. To determine the sweep bandwidth for each horizontal scale division, the total displayed frequency range should be divided by 10.

Note

- Modifying the sweep bandwidth will automatically modify the start frequency and cut-off frequency while keeping the center frequency unchanged.
- In non-zero sweep bandwidth mode, the minimum sweep bandwidth can be se to 10 Hz, if the sweep bandwidth is set to the maximum, the signal analyzer will enter the full sweep bandwidth mode.
- Users can manually set the sweep bandwidth to 0 Hz, or users can press the zero sweep bandwidth menu to enter the zero sweep bandwidth mode.
- When the sweep bandwidth is changed in non-zero sweep bandwidth mode, and both the stepping center frequency and resolution bandwidth (RBW) are set to automatic, they will adjust automatically. The video bandwidth (VBW), if also set to automatic, will track changes in RBW.
- The sweep time will change accordingly when any of the following parameters are modified: sweep bandwidth, RBW, and VBW.

Start frequency: The start frequency defines the left boundary of the sweep. The start and stop

Instruments.uni-trend.com 43 / 92

(cut-off) frequencies appear on the left and right sides of the grid, respectively. Once these values are set, they replace the previously displayed center frequency and sweep bandwidth at the bottom of the screen. Users can adjust the start frequency using the numeric keypad, rotary knob, arrow keys, or by touching the panel menu.

Note

- The sweep bandwidth and center frequency will change with the start frequency, and other system parameter will be affected by the change of sweep bandwidth.
- In the zero sweep bandwidth mode, the value of the start frequency, center frequency and cut-off frequency are the same and will be changed together.

Cut-off frequency: The cut-off (stop) frequency defines the right boundary of the sweep range. The start and cut-off frequencies are displayed on the left and right sides of the grid, respectively. Once these values are set, they appear at the bottom of the screen, replacing the previously displayed center frequency and sweep bandwidth.

Users can adjust the cut-off frequency using the numeric keypad, rotary knob, arrow keys, or by touching the panel menu.

Note

- The sweep bandwidth and center frequency will change with the cut-off frequency, and other system parameter will be affected by the change of sweep bandwidth.
- In the zero sweep bandwidth mode, the value of the start frequency, center frequency and cut-off frequency are the same and will be changed together.

Frequency offset: A frequency offset value is set to account for the frequency conversion between the device under test and the signal analyzer input. The user can change the frequency offset by using the numeric key, rotary knob and arrow key or touch the panel menu.

Note

- This parameter does not affect any hardware settings of the signal analyzer. It only changes the displayed values of the center frequency, start frequency, and cut-off frequency.
- If you need to eliminate the frequency offset, users can set the frequency offset to0 Hz.

Full sweep bandwidth: Change the sweep bandwidth of signal analyzer to display the sweep

Instruments.uni-trend.com 44 / 92

bandwidth of all frequency ranges.

Zero sweep bandwidth: Set the sweep bandwidth to zero. In this mode, the signal analyzer displays the time-domain signal envelope, functioning similarly to an oscilloscope.

Note

In the zero sweep bandwidth mode, it displays the time-domain feature of the fixed frequency components of the signal, it is very different from the non-zero sweep bandwidth mode.

The following function is not valid in the zero sweep bandwidth.

- Marker-> (except -> reference level) in the [Marker] menu
- Scanning time and sweep mode in the [Sweep] menu

Zoom-in sweep bandwidth: The sweep bandwidth is set to double the current sweep bandwidth value to make it easy to observe more signals.

Zoom-out sweep bandwidth: The sweep bandwidth is set to the half of the current sweep bandwidth value to make it easy to observe more signal details.

Previous sweep bandwidth: Set the sweep bandwidth to be the previous sweep bandwidth.

Stepped center frequency: Stepped frequency setup adjusts the increment by which the center frequency, start frequency, and cut-off frequency change when using the arrow keys. The user can change the stepped value by using the numeric key, rotary knob and arrow key or touch the panel menu.

Automatic tuning: Automatic tuning helps users quickly locate signals of interest and optimally position them on the display.

Amplitude (AMPT)

Press the **[AMPT]** key to activate the reference level and enter the amplitude setup menu.

Reference level: Press the **[AMPT]** key to activate the reference level. The reference level is at the top of the screen, which indicates power or voltage value (the unit is the selected amplitude unit). The user can change the reference level by using the numeric key, rotary knob and arrow key or touch the panel menu.

Note

Instruments.uni-trend.com 45 / 92

■ Reference level is the important parameter of signal analyzer; it represents the upper limit of dynamic range of the signal analyzer at the current. When the energy of the signal to be measured exceeds the reference level, it may cause non-linear distortion or even overload alarms. The nature of the signal to be measured should be understood and carefully select reference level, in order to perform the best measurement effect and protect the signal analyzer.

Input attenuation (auto/manual): This setting controls the RF front-end attenuator to optimize signal quality—large signals pass through the mixer with minimal distortion, while small signals pass with low noise. The input attenuation mode can be switched between automatic and manual. Automatic: The input attenuation is linked to the reference level and adjusts accordingly. Manual: The user can change the input attenuation by using the numeric key, rotary knob and arrow key or touch the panel menu.

Note

■ When the maximum mixer level and the reference level is confirmed, the minimum of instrument's input attenuation should meet the formula: the reference level ≤ the input attenuation - Preamplifier - 10 dBm

Preamplifier: The instrument is equipped with two preamplifiers: one for the low-frequency band and one for the full frequency range. These are used to boost weak input signals and ensure accurate amplitude readings.

Low frequency band preamplifier: Operates from 0 Hz to 7.5 GHz.

Full frequency band preamplifier: Effective across the entire frequency range.

When the preamplifier is turned on, the measurement bar area of the screen displays **preamplifier:** on.

Scale: Sets the value represented by each vertical grid division on the display. This function is only available when the scale type is logarithmic. The user can change the scale by using the numeric key, rotary knob and arrow key or touch the panel menu.

Display scale: When logarithmic scale is selected, the vertical axis uses a dB scale. Each grid division can be set from 0.1 dB to 20 dB per division. When linear scale is selected, the vertical axis switches to a linear voltage scale (default unit: V). The top grid represents the reference level, and the bottom grid corresponds to zero level. Each grid division equals one-tenth of the reference level in volts.

Instruments.uni-trend.com 46 / 92

Y-axis unit: Change the amplitude unit. It can be used in logarithmic and linear mode. The unit contains dBm, dBmV, dBµV, V, and W. The default unit is dBm.

Reference level offset: When there is gain or loss between the device under test and the signal analyzer input, an offset value is added to the reference level to compensate for the resulting gain or loss. This value does not change the position of the trace and modified reference level and the amplitude reading of the cursor.

Impedance: Set the input impedance when converting voltage to power. The default input impedance is 50 Ω . If the input impedance of the DUT to the spectrum analyzer is 75 Ω , then need to use a 75 Ω to 50 Ω adapter to connect the DUT to the signal analyzer and set the input impedance to 75 Ω .

Correction: Enter the amplitude correction menu to configure compensation for the gain or loss introduced by external devices such as antennas, cables, or amplifiers. When the correction is enabled, the trace and the corresponding measurement results will all be corrected.

- 1. Select correction: The signal analyzer provides 10 correction factors, and each factor can be edited independently.
- 2. Correction (ON/OFF): Toggle to enable or disable the correction function. The default setting is OFF.
- 3. Close all: Disables all active correction that have been turned on.
- 4. Edit correction is shown as the following table.

Select	Provides 10 data to save, default: correction 1	
Select row	Select the serial number of correction row	
Insert row	Add correction point	
Delete row	Delete the current selected correction row	
Delete correction data	Delete the current correction data	

5. Delete all the correction data: Delete all saved correction data.

Calibrating signal: This function is used to verify the device whether the instrument can search the signal. In the case of no signal input, the calibration signal is turned on and a 50 MHz sine wave signal is automatically input, which is observed on the spectrogram.

Bandwidth (BW)

Press the **[BW]** key to activate the resolution bandwidth and enter the panel menu to control the resolution bandwidth and video bandwidth.

Instruments.uni-trend.com 47 / 92

Resolution bandwidth (auto/manual): Set the resolution bandwidth to recognize two signals with similar frequency.

In manual mode, the user can change the resolution bandwidth from 1 Hz to 8 MHz by using the numeric key, rotary knob and arrow key or touch the panel menu. For values below 1 kHz, the selectable bandwidths are: 1 Hz, 3 Hz, 10 Hz, 30 Hz, 100 Hz, and 300 Hz. If the input value is not an available value, then select an input value close to the available bandwidth.

As the resolution bandwidth decreases, the system automatically adjusts the sweep time to maintain amplitude accuracy. RBW is also related to sweep bandwidth: when the sweep bandwidth decreases, the resolution bandwidth may also decrease.

In the automatic coupling mode, the video bandwidth will change with the resolution bandwidth, so that the ratio of video bandwidth and resolution bandwidth can be constant.

If the video bandwidth and resolution bandwidth are decoupled, a "#" icon appears next to "RBW" at the bottom right of the screen. When recoupling is required, press Manual/Auto key again and select Auto.

Video bandwidth (auto/manual): Set the video bandwidth to filter out the noise except the video band.

In manual mode, the user can change the video bandwidth from 1 Hz to 3 MHz by using the numeric key, rotary knob and arrow key or touch the panel menu. If the input value is not an available value, then select an input value close to the available bandwidth. When the video bandwidth is decreasing, the system will correct the scanning time to maintain the amplitude correction.

If the video bandwidth and resolution bandwidth are not coupling, a "#" icon appears next to "VBW" at the bottom of the screen. When recoupling is required, press Manual/Auto key again and select Auto.

VBW: 3dB RBW: Select the ratio for the video bandwidth and resolution bandwidth.

If the signal is close to the noise level, the signal response displayed on the screen is fuzzy, the ratio can be set to less than 1 to reduce noise. When using the **[Default]** key to reset, the ratio will be set to 1.000. The user can change the ratio by using the numeric key, rotary knob and arrow key or touch the panel menu.

RBW filter type: Set the filter type of RBW. UTS5000A series supports two filters, Gaussian window and Flat window.

■ Gaussian window: A type of exponential window characterized by a wide main lobe, resulting in

Instruments.uni-trend.com 48 / 92

low frequency resolution. It has no negative side lobes, and the first side lobe attenuation can reach up to -55 dB. It is often used to truncate non-periodic signals, such as exponentially decaying signals.

■ Flat window: As the name suggests, this window has a flat response in the passband, producing very small amplitude fluctuations in the frequency domain. It is ideal for accurate amplitude measurements.

Sweep

Press the **[Sweep]** key to enter the following panel menu to select the sweep mode and trigger mode of the signal analyzer.

Scanning time (auto/manual): Select the scanning time of the signal analyzer to display the sweep bandwidth (or when the sweep bandwidth is zero, the time of the signal analyzer to scan the full screen), decreasing the scanning time will increase the scanning frequency. In manual mode, the user can change the scanning time by using the numeric key, rotary knob and arrow key or touch the panel menu.

1. When the sweep bandwidth is not zero

When the scanning time is set to automatic, the signal analyzer selects an optimal (shortest) scanning time based on the current settings. The scanning time is influenced by the following factors:

- 1. The maximum tuning frequency of the signal analyzer
- 2. Selected video bandwidth filter and resolution
- 3. The maximum sampling rate of analog-to-digital converter
- 4. Scanning point
- 5. The scale of amplitude (logarithm or linear)
- 6. Detection mode

Users can select a scanning time that is less than the auto-coupling value; however, this may lead to measurement errors. The minimum scanning time is 1 ms.

2. When the sweep bandwidth is zero

The minimum scanning time is determined by the maximum sample rate of the analog-to-digital converter and the scanning points.

The minimum scanning time is $1 \mu s$, the maximum scanning time is 4000 s.

Instruments.uni-trend.com 49 / 92

Scanning time (common/precise): The sweep mode is divided into the common sweeping and precise sweeping.

The common sweeping is for acquiring faster scanning speeds and the precise sweeping is for acquiring greater measurement accuracy.

Sweep/Measurement (single/continuous): Set the sweep mode to either single or continuous. The default mode is the continuous sweeping.

The state and the selected mode will display at the top of the screen.

Continuous: set the sweep mode to the continuous sweeping, an icon indicates the continuous, the system automatically sends a trigger initialization signal and directly enters the trigger condition judgment process after each scan.

Single: Set the sweep mode to the single sweeping, an icon indicates a single window, the single indicator will be illuminated after clicking the "single window".

If the system is currently in single scanning mode and not in a measurement state, press the "single" key and perform the scan when the trigger condition is met.

If the system is currently in single scanning mode and in a measurement state, press the "single" key and perform the scan and measurement when the trigger condition is met.

Sweep mode (auto/manual): The sweep mode includes automatic, sweeping frequency, and FFT.

- Automatic: The signal analyzer automatically selects the sweeping frequency or FFT mode
 according to the current resolution bandwidth, in order to achieve the fastest possible sweeping
 speed. When RBW is greater than 200 Hz, it automatically selects the sweeping frequency mode.
 When RBW is less than 200 Hz, it automatically selects FFT mode.
- 2. Sweeping frequency: Performed in a point-by-point scanning manner, which is suitable for when the RBW is large.
- 3. FFT: Performed in a parallel scanning manner, which is suitable for when the RBW is small.

Point: Set the number of points obtained from each scan, i.e. the number of points of the current trace. The user can change the point value by using the numeric keys or touching the panel menu.

- 1. As the number of scanning points increases, the frequency resolution of the marked points increases, but the scanning speed decreases.
- 2. The scanning time may become longer when the number of scanning points is increased due to the limitation of the minimum scanning point interval time.

Instruments.uni-trend.com 50 / 92

3. Changing the number of scanning points affects several parameters of the system, so the system will be re-scanned and re-measured.

Trigger

Press the [Trigger] key to enter the trigger menu and to set the trigger parameter.

Trigger type: Arbitrary trigger, external trigger, and video trigger

- Arbitrary trigger: Triggers continuously whenever the trigger conditions are met, without the need to set specific trigger conditions. After each frame is scanned, the next frame will automatically start scanning.
- Video trigger: When the detected video signal voltage exceeds the set video trigger level, a trigger signal is generated.
 - **Trigger level:** When the video trigger is selected, the trigger level line and the value of the trigger level are displayed in the screen. The user can change the trigger level by using the numeric key, rotary knob and arrow key or touch the panel menu.
- 3. **External Trigger:** An external signal (TTL signal) is input through the **[TRIG1]** connector on the rear panel, and a trigger signal is generated when the signal meets the set trigger edge condition.
 - **Trigger edge (rising edge/falling edge)**: Set the trigger edge for external triggering to the rising or falling edge of the pulse. A trigger signal will be generated when the input signal meets the selected trigger edge condition.

Trigger delay: Set the trigger delay time.

4. **Periodic Trigger:** When the periodic trigger is selected, the analyzer will use the built-in periodic timer signal as a trigger. The trigger event is set by the periodic timer signal, and the periodic timer signal is set by the offset and synchronous source. When a period signal is available but no reliable signal, use this trigger to synchronize the periodic signal with an external event (using a periodic synchronization source) to more closely approximate a reliable trigger signal. If the synchronous source is not selected (it is "OFF"), then the internal timer will not be synchronized with any external timing events.

Period: Set the period for the internal periodic timer. For digital communication signal, this is usually set to the frame period of the current input signal.

If the synchronization source is not set to OFF and the rate of external synchronization source is changed for some reason, the periodic timer is synchronized by resetting the timer circuit's internal state, the periodic timer is synchronized at each external synchronization pulse.

Instruments.uni-trend.com 51 / 92

Offset: Adjust the accumulated offset between the periodic timer events and trigger events. **Synchronous source:** Use this drop-down list to select the synchronous source of the periodic timer. Select a source to synchronize the periodic timer trigger, otherwise, the trigger could be

generated anywhere in the frame. Synchronization reduces the accuracy required for period

settings.

Trigger delay: Set the trigger delay time.

Trace

Press the **[Trace]** key to select and control the trace and detection menu. Each trace consists of a series of data points with amplitude information, and with each scan, the signal analyzer refreshes its information for any valid trace.

Select trace: Choose from 6 available traces.

Trace type: Set the type of the currently selected trace. The system will display the scanned data according to the chosen trace type, applying the corresponding calculation method. Trace types include refresh, trace Average, maximum hold, and minimum hold. Each type has its related parameter shown on the upper right corner of the screen.

1. Refresh

Displays real-time data for each sweep point of the trace.

2. Trace average

Each trace point shows the average of multiple sweeps. The waveform becomes smoother as the number of averaged sweeps increases.

3. Maximum hold

Each trace point retains the maximum value observed across multiple sweeps, updating the display whenever a new maximum is detected.

4. Minimum hold

Each trace point retains the minimum value observed across multiple sweeps, updating the display whenever a new minimum is detected.

Detector: Set the detection mode of the current measurement and apply the detection mode to the current trace. The optional detector type includes sampling, peak, negative peak, normal detection, and average.

1. Sampling

For each point on the trace, the sampling shows the transient energy corresponding to a fixed

Instruments.uni-trend.com 52 / 92

time point (usually the first sampling point in the time period) in the corresponding time interval, and sampling applies to noise or noise-like signals.

2. Peak

For each point on the trace, the peak detection shows the maximum value of the sampled data within the corresponding time interval.

3. Negative peak

For each point on the trace, the negative peak detection shows the minimum value of the sampled data within the corresponding time interval.

4. Normal detection

The normal detection are displayed by selecting the maximum and minimum values of the sampled data segments in turn, i.e., for each odd-numbered point on the trace, the minimum value of the sampled data is displayed; for each even-numbered point on the trace, the maximum value of the sampled data is displayed. Using the normal detection can directly observe the upper and lower range of the amplitude change of the signal.

5. Average

For each data point, the detector will take average value by sampling data in the time interval. The average effect is different for different data types. The average type can be set by the **[Meas/Setup]** key.

Refresh (ON/OFF): When it set to ON, clear any previously stored data in the selected trace and continuously displays any signals during the signal analyzer's scanning period.

When it set to OFF, hold and display the amplitude data for the selected trace, the trace register is not refreshed with scanning.

Display (ON/OFF): Set ON/OFF for the selected trace.

Trace operation: The trace operation function performs mathematical operations between traces or between traces and the specified offsets.

- 1. Off: Turn off the operation function.
- 2. Power difference (A-B): Calculates the power difference of the operand A and the operand B and saves the result to target trace. In the sweeping, the following calculation is performed for each point:

Trace=
$$10\log (10^{A/10}-10^{B/10})$$

In this formula, the parameters A and B are in logarithmic power units (decibels). If the value at a point in operand A corresponds to the maximum trace value, the difference result will also be

Instruments.uni-trend.com 53 / 92

the maximum trace value. If the difference result is less than or equal to zero, the result will be set to the minimum trace value.

3. Power sum (A+B): Calculates the power sum of the operand A and the operand B and saves the result to target trace. In the sweeping, the following calculation is performed for each point:

Trace=
$$10\log (10^{A/10}+10^{B/10})$$

In this formula, the parameters A and B are in logarithmic power units (decibels). If a point in operand A or operand B corresponds to the maximum trace value, then the sum result will also be the maximum trace value.

4. Logarithmic difference (A-B+offset): In the logarithmic difference function, the operand A is subtracted from the operand B and an offset is added, and the result is stored in the target trace. In the sweeping, the following calculation is performed for each point:

In this formula, the trace data unit is dBm.

5. A+offset: Calculates the power sum of the operand A and the offset and save the result to arget trace. In the sweeping, the following calculation is performed for each point:

In this formula, the trace data unit is dBm.

Note

The trace operation functions are mutually exclusive, i.e., when an operation function is applied to a trace, the last selected operation function is turned off.

Operand A: Set the first operand trace for the operation. Available options are Trace 1, Trace 2, Trace 3, Trace 4, Trace 5, and Trace 6.

Operand B: Set the second operand trace for the operation. Available options are Trace 1, Trace 2, Trace 3, Trace 4, Trace 5, and Trace 6.

Offset: Set the logarithmic offset used in the operation. The unit is dB. The user can change the offset by using the numeric key, rotary knob and arrow key or touch the panel menu.

Marker

Press the **[Marker]** key to access the marker panel menu to select the marker type and number. A marker is a rhombic icon, as shown in the following Figure 4-1.

Instruments.uni-trend.com 54 / 92

Figure 4-1 Mark Cursor Reading

Ten markers can be used on the screen at the same time, and only one or a pair of markers can be controlled at one time.

Select marker: Choose one of the ten available cursors. The default cursor is Marker 1. After selecting a cursor, users can set parameters such as the cursor type, the trace it marks, and the reading mode. The active cursor will be displayed on the trace selected by "Mark Trace". The current reading of the active cursor is shown in the parameter area and at the upper right corner of the screen.

Mark Mode

- 1. Used to measure the X (frequency or time) and Y (amplitude) values at a specific point on the trace. After selecting Normal mode, a cursor marked with the current cursor number (e.g., "1") will appear on the trace. Please note the following when using this mode:
 - If no cursor is currently activated, a cursor will be automatically activated at the center frequency of the current trace.
 - The reading of the active cursor will be displayed at the upper right corner of the screen.
 - The resolution of the X-axis (time or frequency) reading depends on the sweep bandwidth; reducing the sweep bandwidth can improve the reading resolution.
- 2. Difference value Δ: Used to measure the difference between a "reference point" and another point on the trace in terms of X (frequency or time) and Y (amplitude) values. After selecting Difference mode, a pair of cursors will appear on the trace:
 - The reference cursor, marked with "x". The difference cursor, marked with "△".
- 3. Fixed: After selecting the Fixed cursor, the X and Y values of this cursor can be changed directly or indirectly, but its position on the trace remains unchanged. The Y value does not move with the trace data. The Fixed cursor is commonly used as the reference cursor for the Difference

Instruments.uni-trend.com 55 / 92

cursor and is marked with "x".

4. OFF: Turn off the selected cursor. All cursor information and related functions displayed on the screen will be disabled.

Mark trace: Select the trace marked by the current cursor. Available traces are Trace 1, Trace 2, Trace 3, Trace 4, Trace 5, or Trace 6.

Mark frequency: Mark a specific frequency point on the selected trace. The user can change the frequency by using the numeric key, rotary knob and arrow key or touch the panel menu.

Relative to: Used to measure the difference between two cursors. The two cursors can be placed on different traces simultaneously for comparison.

Close All: Disables all active markers.

Marker->: Use the value of the current cursor to set other system parameters on the signal analyzer (such as center frequency, reference level, etc.). If no cursor is currently active, pressing the **Marker** menu will automatically activate a cursor.

- 1. ->Center frequency: Set the center frequency of signal analyzer to the frequency at the current cursor.
 - Select the "Normal" cursor, the center frequency is set to the frequency at the cursor.
 - Select the "Difference" cursor, the center frequency is set to the frequency at the difference cursor.
 - This function is not available in the zero sweep bandwidth.
- 2. ->Stepped center frequency: Set the stepped center frequency of signal analyzer to the frequency at the current cursor.
 - Select the "Normal" cursor, the stepped center frequency is set to the frequency at the cursor.
 - Select the "Difference" cursor, the stepped center frequency is set to the frequency difference between the difference cursor and reference cursor.
 - This function is not available in the zero sweep bandwidth.
- 3. ->Start frequency: Set the start frequency of signal analyzer to the frequency at the current cursor.
 - Select the "Normal" cursor, the start frequency is set to the frequency at the cursor.
 - Select the "Difference" cursor, the start frequency is set to the frequency at the difference cursor.
 - This function is not available in the zero sweep bandwidth.

Instruments.uni-trend.com 56 / 92

4. ->Cut-off frequency: Set the cut-off frequency of signal analyzer to the frequency at the current cursor.

- Select the "Normal" cursor, the cut-off frequency is set to the frequency at the cursor.
- Select the "Difference" cursor, the cut-off frequency is set to the frequency at the difference cursor.
- This function is not available in the zero sweep bandwidth.
- 5. ->Reference level: Set the reference level of the signal analyzer to the amplitude of the valid marker and move the marker to the reference level (at the top of the grid).
 - Select the "Normal" cursor, set the mark amplitude of the signal analyzer to the amplitude of the current reference level.
 - Select the "Difference" cursor, set the reference level to the amplitude difference between markers.

Marker list: Turn on/off the marker list

When the marker list is enabled, all active cursors are displayed as a list in the lower window of the split screen. The list shows the cursor number, mark mode, trace number associated with the marker, X-axis scale type, X-axis reading, and amplitude. Use the cursor list to easily view measurement values for multiple points simultaneously.

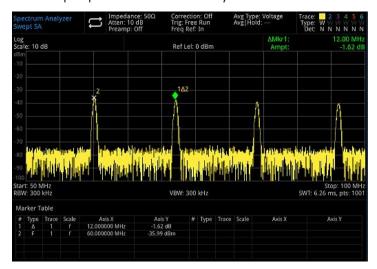


Figure 4-2 Marker List

Attribute: X-axis scale selection, X-axis scale (manual/automatic), and marker line switch.

- 1. X-axis scale: Selecting frequency, period, time, reverse time, or marker changes the reading unit according to the chosen X-axis scale.
 - Frequency: When this type of reading is selected, the "Normal" and "Fixed" cursors shows the absolute frequency. The "Difference" cursors shows the frequency difference of the difference cursor relative to the reference cursor.

Instruments.uni-trend.com 57 / 92

■ Period: When this type of reading is selected, the "Normal" and "Fixed" cursors shows the reciprocal of the cursor frequency. The "Difference" cursors shows the reciprocal of the frequency difference. When the frequency difference is zero, its reciprocal is infinite and the reading displays "---".

- Time: When this type of reading is selected, the "Normal" and "Fixed" cursors shows the time difference between the cursor and start sweeping. The "Difference" cursors shows the scanning time difference between the difference cursor and the reference cursor. In the zero sweep bandwidth mode, the default reading method is "Time".
- Reverse time: When this type of reading is selected, display the reciprocal of the scanning time difference between the difference cursor and the reference cursor. When the time difference is zero, its reciprocal is infinite and the reading displays "---".
- 2. X-axis scale (auto/manual): Select auto or manual, when X-axis scale is set to auto, and the sweep bandwidth is set to the zero sweep bandwidth, the marker reading will automatically switch to "Time".
- 3. Marker line (OFF/ON): Turn on/off the marker line
 - When the marker line is opened, the cross line is displayed at the amplitude point indicated by the cursor. The width of the horizontal line and the height of the vertical line are consistent with the grid length and height of the waveform display area.
 - If the cursor is not in the visible area, then extend the marker line to the display area. This feature is useful for cursors outside the display area, where the cursor extension line indicates the cursor's amplitude for comparison.

Mark function: Mark noise, in-band power and in-band density, bandwidth point and frequency meter of N dB, frequency meter threshold.

- 1. Mark noise: Performs noise marking for the selected cursor and reads the normalized noise power density value at that cursor.
 - If the currently selected cursor is disabled in the Marker menu, pressing "Mark Noise" will automatically enable the cursor in "Normal" mode. It then measures the averaged noise level at the cursor's frequency point, normalized to a 1 Hz bandwidth. Simultaneously, compensation is applied for different detection methods and trace types. Noise measurement accuracy improves when using the "RMS average" or "sampling" mode.
- 2. In-band power: in the non-zero sweep bandwidth mode, calculates the total power of the signal within a specified bandwidth.

Instruments.uni-trend.com 58 / 92

In the zero sweep bandwidth mode, calculates the average power within the specified bandwidth.

- 3. In-band density: in the non-zero sweep bandwidth mode, in-band density is the total power in the bandwidth to be measured divided by the measured bandwidth.
 In the zero sweep bandwidth mode, in-band density is the in-band power measured at first and then divided by Bn (Bn refers to the noise bandwidth of the RBW filter).
- 4. N dB point (ON/OFF): Turn on the N dB bandwidth measurement function, or set the value of N dB. N dB bandwidth is defined as the frequency difference between two points at N dB amplitude down (for N < 0) or up (for N > 0) on either side of the current cursor frequency. The user can change the value of N by using the numeric key, rotary knob and arrow key or touch the panel menu.
- 5. Frequency meter (OFF/ON): Turn on the frequency counting of the cursor. The cursor displays the exact frequency of the frequency point where the energy of the frequency point is the largest. The scanning speed will be affected when the frequency meter is enabled.
- 6. Frequency meter threshold: Set the counting time of frequency meter.

Demod: Set the demodulation type to "demodulation amplitude (AM)" or "demodulation frequency (FM)" or turn off the demodulation function. The default setting is "OFF".

- 1. When AM (or FM) demodulation is turned on, the system will perform AM (or FM) demodulation at the center frequency for that frequency point.
- 2. The machine is equipped with a headphone jack, which can output the demodulated signal in audio mode through the headphone. The audio frequency indicates the frequency of the modulated signal, and the audio strength indicates the amplitude of the modulated signal.

Peak

Press the **[Peak]** key to turn on the peak search menu and execute a peak search.

Mark frequency: Mark the frequency point on the trace. The user can change the frequency value by using the numeric key, rotary knob and arrow key or touch the panel menu.

Marker->: Refer to the **[Marker]** key at the panel menu "Marker ->".

Peak search: Use the normal cursor mode to search for the highest amplitude in the trace and display its frequency and amplitude value, then press peak search to perform it one time.

Next peak: Find the peak on the trace that is second only to the amplitude to the current peak and meets the search criteria, and mark it with the cursor. Without this peak, the marker will not move.

Instruments.uni-trend.com 59 / 92

Next peak on the left: Find the current peak on the left side and search for the close peak that meet the search criteria on the trace, and mark it with the cursor.

Next peak on the right: Find the current peak on the right side and search for the close peak that meet the search criteria on the trace, and mark it with the cursor.

Minimum peak: Find the minimum amplitude value on the trace and mark it with the cursor.

Peak-to-peak search: Peak and minimum searches are performed at the same time and marked with a "difference" cursor, where the peak search result is marked with a reference cursor and the minimum search result is marked with a difference cursor.

Continuous peak search (ON/OFF): Turn on/off the continuous peak search and the default setting is off. When the continuous peak search is enabled, the signal analyzer will automatically execute one peak search for tracing the measurement signal.

Peak list (ON/OFF): Turn on/off the peak list, and the default setting is OFF.

Turn on the peak list, which displays a list of peaks (frequency and amplitude) that meet the search parameters, display up to a maximum of 20 eligible peaks in a split screen window.

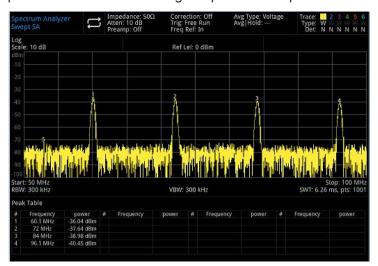


Figure 4-3 Peak List

Search standard: Threshold line, peak threshold, and peak offset.

- 1. Threshold line (ON/OFF): Set whether to display the indicator line of peak threshold and peak offset the threshold line displays the peak offset value. The default setting is OFF.
- 2. Peak threshold (auto/manual): Automatically or manually specify the minimum of the peak amplitude, only the peak that are greater than the peak threshold can be judged as peak. The user can change the peak threshold by using the numeric key, rotary knob and arrow key or touch the panel menu.
- 3. Peak offset (auto/manual): Automatically or manually specify the difference between the peak and the minimum amplitude on the left and right side, only the peak that are greater than the peak difference can be judged as peak. The user can change the peak offset by using the

Instruments.uni-trend.com 60 / 92

numeric key, rotary knob and arrow key or touch the panel menu.

Measurement Setup (Meas/Setup)

Press the **[Meas/Setup]** key to turn on the parameter panel menu, it includes the following settings.

Average/Hold time: Set the average time for the trace. The user can change the average time by using the numeric key, rotary knob and arrow key or touch the panel menu. Selecting multiple average times reduces the effect of noise or other random signals, thus highlighting the stable signal characteristics in the signal, and the larger the number of averages, the smoother the trace.

Average Type

- 1. Logarithmic power average: Calculates the average of the logarithmic amplitude values (unit is dB) of the signal envelopes measured in a signal collection unit. The average detection turns to video detection, for the stochastic noise, logarithmic average = power average 2.5 dB = voltage average -1.45. Thus, it can reduce the display level of noise (not the actual level of noise), it is suitable for observing low energy narrowband signals, especially those close to noise.
- 2. Power average: Calculates the average power of the signal. The average detection turns to RMS (power) detection. The power average is the actual power for noise. It is suitable for measuring the real-time power of complex signal.
- 3. Voltage average: Calculates the average of the voltage values (unit is dB) of the signal envelopes measured in a signal collection unit. The average detection mode switches to voltage detection. The voltage average display in linear, it suitable for observing AM signal or the rising and falling condition of pulse demodulation signal (such as radar, TDMA ejector).

Display line (ON/OFF): Set to change the display position of display line level. The display line is a reference horizontal line with an amplitude value equal to the set value, and the corresponding amplitude unit is the same as the Y-axis unit. The user can change the display line level by using the numeric key, rotary knob and arrow key or touch the panel menu.

Note

The display line is a reference horizontal line with an amplitude value equal to the set value, and the corresponding amplitude unit is the same as the Y-axis unit.

If the display line is outside the visual range, then it display at the top or bottom of the grid and indicated by direction.

Instruments.uni-trend.com 61 / 92

Limits: Set the parameter of limits, press the **[Default]** key to turn off the limits measurement, and the limits data will be saved.

- 1. Select: Select the current limits. There are 6 limit line available. The default is 1.
- 2. Limits (ON/OFF): Turn on/off the limits line. When the limit line is enabled, the limit line displays on the measurement interface, the trace will perform test according to the current limit line. Each limit line is shown in a different color.
- 3. Test trace: Set the test trace for the current limit line. The default trace is 1.
- 4. Tolerance (ON/OFF): Turn on/off the tolerance display. When the tolerance is enabled, the tolerance line displays on the measurement interface; when the tolerance is disabled, the tolerance is invalid.
- 5. Type (upper/lower): Select the current limit line to "Upper" or "Lower", if the trace amplitude is greater than the amplitude of upper limit line or less than the amplitude of lower limit line, then the test fails.
- 6. Edit limits: Press this key to enter the menu to turn on the limits line window, the current limit line will appear, and the peak list will be turned off.

Turn on the trace is corresponding to the limit line, it includes

- Select: Select the limit line to be edited. The default limit line is 1.
- Select row: Select the row of limit list.
- Frequency: Edit the frequency for the current point. The user can change the frequency by using the numeric key, rotary knob and arrow key or touch the panel menu.
- Amplitude: Edit the amplitude for the current point. The user can change the amplitude by using the numeric key, rotary knob and arrow key or touch the panel menu.
- X offset: Set the frequency offset for the current line.
- Y offset: Set the amplitude offset for the current line.
- Apply offset: X offset and Y offset data to each point of the current limit line, and then reset X offset and Y offset to 0.
- Insert row: Insert an editing point.
- Delete row: Delete the currently selected.
- Delete limits: Delete the current limit line, the data of the current limit line will be deleted.
- 7. Test limits (ON/OFF): Turn on/off the test of the current limit line.
- 8. Copy limits: Copy the limit line from the selected limit line.
- 9. Limits make-up: Make-up the limit line from the selected limit line.
- 10. Delete all limits: After deleting all limit lines, the data of all limit lines are cleared and changed to factory settings.
- 11. **Measurement preset:** Restore the measurement mode/setting to the factory settings.

Instruments.uni-trend.com 62 / 92

Single

The **[Single]** key is the quick sweep mode key. The details refer to the section

"Sweep/Measurement" in chapter 4.

Input/Output

On the touch screen, press the panel menu and click **[Input/Output]** in the expanded menu to open the corresponding parameter setting panel menu and set the parameters of calibration, reference frequency input and input coupling.

Alignments: This function is used to verify that the device has properly searched for the signal, as well as to control the automatic calibration.

- 1. RF Calibrator: Controls the switch of the calibration signal, in the case of no signal input, the calibration signal is turned on, and the sine wave signal of 50MHz is automatically input, which is observed on the spectrogram.
- 2. Align Auto: Turn auto calibration on or off. When automatic calibration is turned on, the device is turned on to automatically perform a calibration.
- 3. Align Now: The system is immediately self-calibrated once using the calibration source inside the system.

Freq Ref In:Set the source of the reference frequency.

- 1. Sense: The reference frequency is automatically set according to the current external reference frequency input. If there is an external reference input, the frequency reference is automatically set to external; If there is no external reference input, the frequency reference is automatically set to internal.
- 2. Internal:The frequency reference remains internal regardless of whether there is currently an external reference input.
- 3. External: The frequency reference remains external regardless of whether there is currently an external reference input.

Default Setting

Press the **[Default]** key to provide an easy environment for measurement.

Press [Default] > Factory Setting, reset as the following steps.

- 1. Rest the signal analyzer to signal analyzer mode (SA)
- 2. Enter the frequency menu
- 3. Set the default parameter for some conditions
- 4. Execute the test of processor and not affect the correction data

- 5. Delete the cache and all trace data of input and output
- 6. The amplitude of trace 2, 3, 4, 5 and 6 will not display
- 7. The amplitude correction factor will be turned off, but remains in the memory of the signal analyzer
- 8. The limit test will be turned off, but the limit line list remains in the memory of the signal analyzer
- 9. The state directly set to 0

The default values of the key parameters after reset are as follows.

Menu	Parameter	Default value
Frequency	Start frequency	10 MHz
Frequency	Cut-off frequency	26.5 GHz
Frequency	Frequency offset	0 Hz
Amplitude	Reference level	0 dBm
Amplitude	Input attenuation	Auto, 10 dB
Amplitude	Pre-amplification	OFF
Amplitude	Reference level offset	0 dB
Amplitude	Impedance	50 Ω
Bandwidth	Resolution bandwidth	Auto, 3 MHz
Bandwidth	Video bandwidth	Auto, 3 MHz
Sweep	Scanning time	Auto, 11 ms
Sweep	Sweep mode	Auto, frequency sweep
Sweep	Sweep count	4001
Sweep	Trigger type	Arbitrary trigger
Trace	Select trace	1
Trace	Trace type	Refresh
Trace	Trace detector	Normal detection
Trace	Trace refresh	ON
Trace	Trace display	ON
Measurement	Measurement type	Frequency sweep
Measurement Setup	Average/hold time	100
Measurement Setup	Average type	Voltage

System Setup

Press the **[System]** key to enter the setup menu, it can access the system information, basic

setting and network setting of the signal analyzer.

System information: Enter the system information panel menu to check basic and optional information.

 Basic information: Product name, manufacturer, product model, serial number, software version number, medium frequency hardware version number, radio frequency hardware version number, medium frequency logical version number, radio frequency logical version number, etc.

2. Option information: Check the version number and state of the option.

Setting: Enter the setup panel menu to set up the basic and network setting.

1. Basic Setting

Language: Simplified Chinese, English, German.

Time format: 12 hours and 24 hours.

Date/Time: Tap this area to pop out the Windows system time setting window, modify the time and date in the time setting window.

Picture format: Set the format of screenshot, it has bmp and png for selection.

Power-on parameter: Set the system parameter settings that are loaded after power on, the default setting can set to previous or preset.

Backlight: Swipe the scroll bar to change the backlight of the screen.

Sound: Swipe the scroll bar to change the sound.

HDMI: HD multimedia interface, touch "□" to tick it, it indicates the interface is turned on.

Screenshot inverse color: Set the inverse color of screenshot.

Preset file: When the power-on parameter is set to preset, this configuration file will be used to set the parameter when the instrument is turned on.

2. Network Setting

Adopter (LAN switch): Touch "open" to enter the network setting window of Windows, modify the network configuration in the network setting window.

DHCP: Touch "open" to enter the network setting window of Windows, modify the network configuration in the network setting window.

IPV4 address: The format of IP address is nnn.nnn.nnn.nnn. The first nnn range is 1 to 223, and the other three nnn ranges are 0 to 255. It is recommended to consult the network administrator for an available IP address.

Subnet mask: The format of subnet mask is nnn.nnn.nnn.nnn.nnn range is 0 to 255. It is recommended to consult the network administrator for an available subnet mask address.

Instruments.uni-trend.com 65 / 92

Gateway setting: The format of gateway is nnn.nnn.nnn.nnn. The first nnn range is 1 to 255, and the other three nnn ranges are 0 to 255. It is recommended to consult the network administrator for an available gateway address.

MAC address: The physical address to confirm the location of a network device which is also called hardware address, the length is 48 bits (6 bytes). It consists of hexadecimal digits, including the first 24 digits and the last 24 digits, in the format of xx-xx-xx-xx-xx. The first 24 bits are called organization-unique identifiers, while the last 24 bits are assigned by the manufacturer and called extended identifiers.

3. Port Setting

Web login username: Set the username for logging in the browser. Web address http://IP:9000, where IP is the IPv4 address of the network settings, e.g.: http://192.168.20.117:9000.

Web login password: The password for logging in the browser. After successful login, users can control the instrument, execute SCPI commands, network settings, etc. on the browser. After the Web login username and password are set, the device can be remotely controlled using a Web browser on a PC or mobile terminal, which mimics the touch screen/mouse clickable display function, just like a physical instrument, and operates as follows.

(1) Access Local Area Network

The computer and the oscilloscope are under the same LAN. Check the IP address through the system menu of the signal analyzer, and then the browser accesses the signal analyzer by http://ip:9000 port.

Example

Computer IP: 192.168.20.3

Signal analyzer IP: 192.168.20.117

PC browser using 192.168.20.117:9000 to access the signal analyzer to check the basic information and control parameter of the instrument, such as network setting, password and SCPI, as shown in the following Figure 4-4.

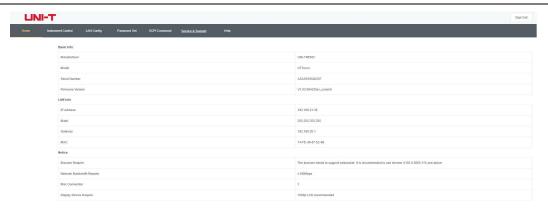


Figure 4-4 Web Basic Information

Log in to check the network and password and SCPI setting of the instrument. Web username and password refer to port setting, as shown in the following Figure 4-5.

Figure 4-5 Web Control

The operations that can be performed on the touch screen of the physical instrument, such as selecting menu panels, clicking on function keys, entering numbers and characters, dragging marks, etc., can also be performed on this Web page, as well as printing the screen.

(2) Access Outer Network

- a. Plug the network cable into the signal analyzer and the network can be accessed on the internet
- b. Open the frp proxy service on the server
- c. Configure the frp proxy IP and port of signal analyzer
- d. The browser can access http://IP:web_port, and the access interface is consistent with the above.

Note

Instruments.uni-trend.com 67 / 92

(3) This signal analyzer uses frp intranet penetration way to achieve external network access. frp version is 0.34.0. This machine with frp-0.34.0 client, it need use with the server, the server needs to open frp server, the client connects to the frp server port is 7000, so the server needs to configure bind_port = 7000.

(4) Network Setting

Modify the network and Frp agent network information of signal analyzer, as shown in the following Figure 4-6.

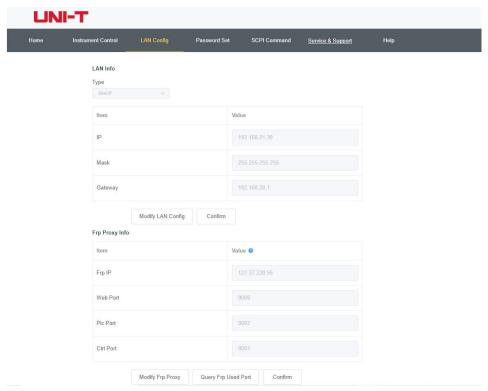


Figure 4-6 Web Network Setting

(5) Password Setting

Modify Web login password of the signal analyzer, as shown in the following Figure 4-7, the original password can be viewed under Physical Instruments->System->Setting->Interface Settings.

Instruments.uni-trend.com 68 / 92

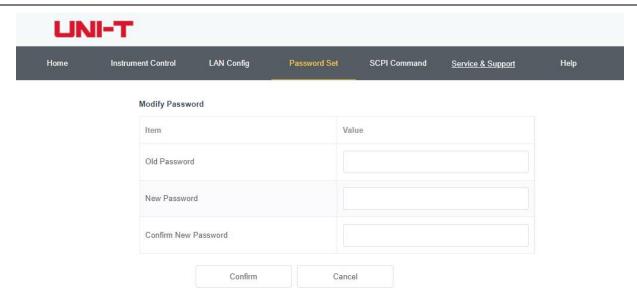


Figure 4-7 Web Password Setting

(6) SCPI

Execute the SCPI command, as shown in the following Figure 4-8, enter the command in the SCPI command edit box, click the "Send Command" button, and the execution result will be printed in the report column as below.

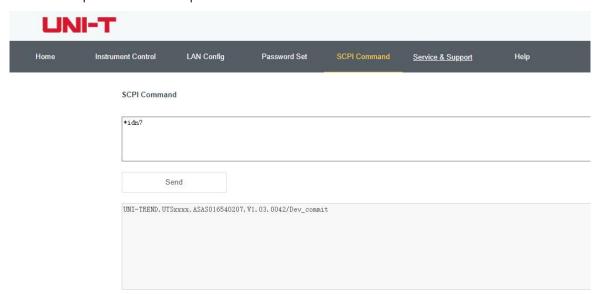


Figure 4-8 SCPI Contro

Restore default setting: Enter the restore default menu to perform this function.

- 1. Restore the system setting, the system setting of the signal analyzer will restore to the default state.
- 2. Clear data, all the stored data of the signal analyzer will be deleted.
- 3. Restore all the setting, all the setting of the signal analyzer will restore to the default state and empty user's data.

Instruments.uni-trend.com 69 / 92

File System

Press the [File] key to enter the file system to check, create, delete, copy, and move.

Check: Browse and view all files and folders within the file system.

Create: Within any directory, tap the blank space on the touch screen, then select New \rightarrow Folder from the pop-up menu to create a new folder.

Delete: In any directory, select the file(s) or folder(s) to delete, then long-press the touch screen to open the menu. Choose Delete and confirm to remove the selected items.

Copy: In any directory, select the file(s) or folder(s) to copy, long-press the touch screen to open the menu, select Copy, and confirm the selection.

Move: In any directory, select the file(s) or folder(s) to move, long-press the touch screen to open the menu, select Move, and confirm the selection.

File Storage (Save/Recall)

Press the **[Save/Recall]** key to enter the save menu, the types of files that can be saved in the instrument are state, trace + state, measurement data, limits, correction and export. Long Press this key to screenshot.

State: Press the state panel menu to access the save menu of state. Save the state into the instrument.

- 1. Press the **Export** key, the instrument will save the current state by the default file name, or the filename entered by the user.
- 2. After the state file is selected, press the **Import** key to read the current state file.

Trace + State: Press the **Trace + State** panel menu to enter the save menu of Trace + State. The instrument's state and the selected trace can save to a file.

There are six traces for selection.

- Press the **Export** key, the instrument will save the current state and trace by the default file name, or the filename entered by the user.
- 2. After this file is selected, press the **Import** key to read the current Trace + State file.

Measurement data: Press the panel menu of **measurement data** to access the save menu of the measurement data. The selected measurement data type (such as trace, measurement result, peak list or cursor list) can be saved into the specified file. The instrument will save the corresponding data in .csv (data separated by comma) format for data analysis by using Excel software.

Instruments.uni-trend.com 70 / 92

There are six traces for selection.

Data type: Trace, peak list, and marker list

 Press the **Export** key, the instrument will save the currently selected measurement data by the default file name, or the filename entered by the user.

2. After this file is selected, press the **Import** key to read the current measurement data file.

Limits: Press the panel menu of **limits** to access the save menu of the limits, save the selected limit line to the file.

Select limits: Six limit data

1. Press the **Export** key, the instrument will save the current limit by the default file name, or the filename entered by the user.

2. After this file is selected, press the **Import** key to read the current limit file.

Correction: Press the panel menu of **correction** to access the save menu of the correction, save the selected corrected value to the file.

Select correction: 10 corrected data

 Press the **Export** key, the instrument will save the current corrected data by the default file name, or the filename entered by the user.

2. After this file is selected, press the **Import** key to read the current correction file.

Export: Export the currently selected file.

Import: Import the currently selected file (this key is hidden when no file is selected).

Screen Lock (Touch Lock)

Press the **[Touch Lock]** key, if the key indicator turns to green which indicating touch function is locked, if the key indicator is extinguished which indicating touch function is enabled.

Mode/Measurement (Mode/Meas)

Press the **[Mode/Meas]** key to open the Mode Select window. For spectrum analysis mode, users can select channel power, time domain power, occupied bandwidth, third-order intermodulation, adjacent channel power, spectrum monitoring, carrier-to-noise ratio, and harmonic measurements, refer to "One-key Measurement" in chapter 5 for more information about these measurements. Mode: spectrum analysis, EMI, analog demodulation, vector signal analysis, Phase Noise Analyzer, LTE FDD, LTE TDD, NR, IQ analysis (there are some options that need to be activated separately.)

Instruments.uni-trend.com 71 / 92

Please go to the official website to download the required instructions

Automatic Tuning (Auto)

Press the [Auto] key to enable the automatic tuning to check the input signal.

- 1. Perform the peak search in the full sweep bandwidth mode
- 2. Operating marker >Center frequency
- 3. Operating marker >Reference level
- 4. Set other setting to automatic to observe the signal

Note

The effective frequency range of the auto-tuning function is from 10 MHz to 26.5 GHz, and the minimum amplitude of the signal at which it can automatically detect is -65 dBm.

Instruments.uni-trend.com 72 / 92

5. One-key Measurement

- Frequency Sweep
- Channel Power
- Time-domain Power
- Occupied Bandwidth
- Third-order Intermodulation
- Adjacent Channel Power
- Frequency Monitoring
- Carrier-to-noise Ratio
- Harmonic Wave

This chapter describes how to make one-key measurement by using the **[Meas]** key on the front panel (spectrum analysis mode).

Frequency Sweep

Press [Meas] > Frequency Sweep

Using the sweep analysis (frequency domain), FFT analysis (frequency domain), or zero sweep bandwidth analysis (time domain) for measurement. When the frequency sweep is selected, the advanced measurement is OFF by default.

The details refer to "Chapter 4".

Press the **[Meas/Setup]** key to set the parameter of frequency sweep analysis, Press this button for other measurement settings for subsequent one-touch measurements.

Instruments.uni-trend.com 73 / 92

Channel Power

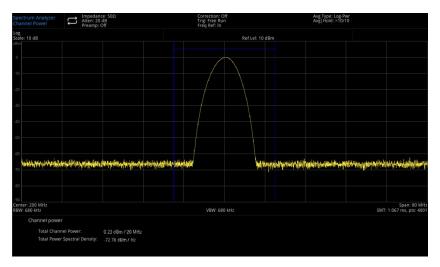


Figure 5-1 Channel Power

Measure the power and power spectral density within a user-specified channel bandwidth. A pair of vertical lines on the display indicates the boundaries of the channel bandwidth, and you need to set the center frequency, reference level, and channel bandwidth.

Press [Meas] > Channel Power to enter the following panel menu.

Measurement Setup

Average/Hold time (ON/OFF): Press the average number (ON) to specify the average number of scans used to calculate the measurement results, the scan number range is from 1 to 10,000. The user can change the average time by using the numeric key, rotary knob and arrow key or touch the panel menu. The average of the measurements will be displayed after each scan. Select (OFF) to turn off this function.

Average mode (exponential/repeat): Switching between the exponential and repeat mode, this averaging mode is used to determine the average mode of operation of the signal analyzer when the specified number of averaging scans has been reached.

When the exponential mode is selected, after the specified average number of scans is reached, each channel trace data is exponentially weighted, added to the previous average and averaged. When the repeat mode is selected, the weights of the new data are larger than the weights of the old data, which facilitates the tracking of slowly changing signals, and this averaging result will be displayed at the end of each scan.

When the repeat mode is selected, and the specified average number of scans is reached, all previous data is cleared and a rescan will be performed.

Average type: Calculates the average of the logarithmic amplitude values (unit: dB) of the signal

Instruments.uni-trend.com 74 / 92

envelopes measured within a signal collection unit. The average detection mode switches to video detection

Power average: Calculates the average of the power (square of the amplitude) of the signal. The average detection mode switches to RMS (power) detection.

Voltage average: Calculates the average of the voltage values (unit: dB) of the signal envelopes measured within a signal collection unit. The average detection mode switches to voltage detection.

Integral bandwidth: Specifies the integration range when calculating the power within a channel, for example, setting the main channel bandwidth.

Note: The integral bandwidth is displayed as a blue box on the screen.

At this time, the sweep bandwidth should be set between 1 and 10 times the integral bandwidth. The user can change the sweep bandwidth by using the numeric key, rotary knob, arrow key or touching the panel menu.

Measurement preset: Restore the measurement mode/setting to the factory settings.

Time-domain Power

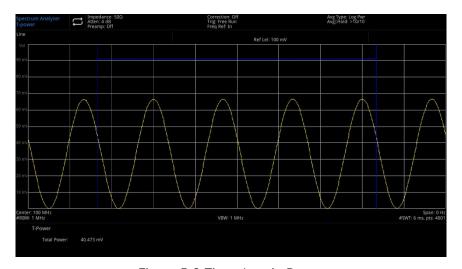


Figure 5-2 Time-domain Power

Press **[Meas] > Time-domain Power**, the system enters the zero sweep bandwidth mode and calculate the power in the time-domain.

Measurement Setup

Average/Hold time (ON/OFF): Press the average number (ON) to specify the average number of scans used to calculate the measurement results, the scan number range is from 1 to 10,000. The user can change the average time by using the numeric key, rotary knob and arrow key or touch the

Instruments.uni-trend.com 75 / 92

panel menu. The average of the measurements will be displayed after each scan. Select (OFF) to turn off this function.

Average mode (exponential/repeat): Switching between the exponential and repeat mode, this averaging mode is used to determine the average mode of operation of the signal analyzer when the specified number of averaging scans has been reached.

When the exponential mode is selected, after the specified average number of scans is reached, each channel trace data is exponentially weighted, added to the previous average and averaged. When the repeat mode is selected, the weights of the new data are larger than the weights of the old data, which facilitates the tracking of slowly changing signals, and this averaging result will be displayed at the end of each scan.

When the repeat mode is selected, and the specified average number of scans is reached, all previous data is cleared and a rescan will be performed.

Average type: Calculates the average of the logarithmic amplitude values (unit: dB) of the signal envelopes measured within a signal collection unit. The average detection mode switches to video detection.

Power average: Calculates the average of the power (square of the amplitude) of the signal. The average detection mode switches to RMS (power) detection.

Voltage average: Calculates the average of the voltage values (unit: dB) of the signal envelopes measured within a signal collection unit. The average detection mode switches to voltage detection.

Start time: Set the left boundary of the time-domain power measurement in terms of time. The data calculation range for time domain power measurements is from the start line to the end line. The default value is 0 s. The user can change the left boundary by using the numeric key, rotary knob and arrow key or touch the panel menu.

Stop time: Set the right boundary of the time-domain power measurement in terms of time. The data calculation range for time domain power measurements is from the start line to the end line. The default value is 10 ms. The user can change the right boundary by using the numeric key, rotary knob and arrow key or touch the panel menu.

Measurement preset: Restore the measurement mode/setting to the factory settings.

Occupied Bandwidth

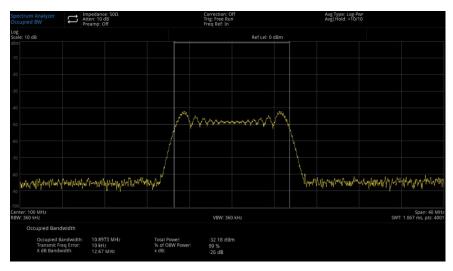


Figure 5-3 Occupied Bandwidth

The occupied bandwidth calculation begins by determining the total power of the spectrum displayed on the screen. Two markers are then placed on the spectrum. The user specifies the percentage of power between these two marker frequencies as a proportion of the total spectrum power.

By default, this percentage is set to 99%. The power-bandwidth calculation first sums the power of all signals on the trace. For the 99% occupied power bandwidth, the markers are positioned at two frequencies—one on the left and one on the right—such that the power contained between them accounts for 99% of the total spectral power. The remaining 1% of power is evenly distributed outside these markers.

The frequency difference between the two markers represents the 99% occupied bandwidth and is displayed on the screen.

The occupied bandwidth function can also be used to indicate the frequency difference between the signal analyzer's center frequency and the channel's center frequency. If the two boundary frequency of the occupied bandwidth are denoted as F1 and F2, the "Transmit Freq Error" (transmit frequency error) is defined as the difference between (F1+F2)/2 and the center frequency of the signal analyzer.

The occupied bandwidth measurement can be performed in single scan mode or continuous scan mode, and the user must set the center frequency, reference level, and channel interval.

Press [Meas] > Occupied Bandwidth to enter the following panel menu.

Measurement Setup

Average/Hold time (ON/OFF): Press the average number (ON) to specify the average number of

Instruments.uni-trend.com 77 / 92

scans used to calculate the measurement results, the scan number range is from 1 to 10,000. The user can change the average time by using the numeric key, rotary knob and arrow key or touch the panel menu. The average of the measurements will be displayed after each scan. Select (OFF) to turn off this function.

Average mode (exponential/repeat): Switching between the exponential and repeat mode, this averaging mode is used to determine the average mode of operation of the signal analyzer when the specified number of averaging scans has been reached.

When the exponential mode is selected, after the specified average number of scans is reached, each channel trace data is exponentially weighted, added to the previous average and averaged. When the repeat mode is selected, the weights of the new data are larger than the weights of the old data, which facilitates the tracking of slowly changing signals, and this averaging result will be displayed at the end of each scan.

When the repeat mode is selected, and the specified average number of scans is reached, all previous data is cleared and a rescan will be performed.

Average type: Calculates the average of the logarithmic amplitude values (unit: dB) of the signal envelopes measured within a signal collection unit. The average detection mode switches to video detection.

Power average: Calculates the average of the power (square of the amplitude) of the signal. The average detection mode switches to RMS (power) detection.

Voltage average: Calculates the average of the voltage values (unit: dB) of the signal envelopes measured within a signal collection unit. The average detection mode switches to voltage detection.

Percentage of occupied power (% of OBW Power): Used to change the percentage of signal power when determining the occupied bandwidth. The user can change the percentage by using the numeric key, rotary knob and arrow key or touch the panel menu.

x dB: The number of dB that defines the highest point in the signal (P1) and is used to measure the transmit bandwidth.

This transmit bandwidth should be within the OBW span, this function is independent of the OBW calculation, the result of the XdB bandwidth calculation is also known as the transmit bandwidth, and EBW.

Place two directional markers, F1 and F2, on the left and right sides of the highest peak (P1) in the signal. These markers are positioned at frequencies where the amplitude is exactly X dB below the amplitude of P1, with X being a user-specified value. The total power between these two markers is

Instruments.uni-trend.com 78 / 92

then calculated.

F1 is defined as the frequency below P1 where the amplitude drops by X dB (left side), and F2 is the frequency above P1 where the amplitude also drops by X dB (right side). The transmit bandwidth is calculated as the difference between F2 and F1 (F2 - F1). The value of X can be set by the user within the range of -100.0 dB to -0.1 dB, adjustable via numeric keys, rotary knob, arrow keys, or the touch panel menu.

Note

An asterisk next to the XdB bandwidth value indicates that this result was not obtained with the optimal signal analyzer settings.

If transmit bandwidth accuracy is your primary concern, select Maximum Hold, then go to [Trace] > Detector > Peak Detect. Using peak detection with Maximum Hold ensures the most accurate transmit bandwidth measurement.

Measurement preset: Restore the measurement mode/setting to the factory settings.

Third-order Intermodulation

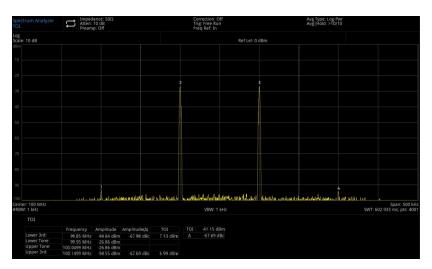


Figure 5-4 Third-order Intermodulation

Third-order Intermodulation (TOI) is used to calculate and display the output cut-off point (IP3) and placed on the trace to indicate the direction of the signal under test and its third order products.

Press [Meas] > Third-order Intermodulation to enter the following panel menu.

Measurement Setup

Average/Hold time (ON/OFF): Press the average number (ON) to specify the average number of scans used to calculate the measurement results, the scan number range is from 1 to 10,000. The

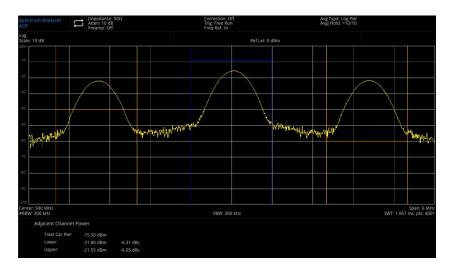
Instruments.uni-trend.com 79 / 92

user can change the average time by using the numeric key, rotary knob and arrow key or touch the panel menu. The average of the measurements will be displayed after each scan. Select (OFF) to turn off this function.

Average mode (exponential/repeat): Switching between the exponential and repeat mode, this averaging mode is used to determine the average mode of operation of the signal analyzer when the specified number of averaging scans has been reached.

When the exponential mode is selected, after the specified average number of scans is reached, each channel trace data is exponentially weighted, added to the previous average and averaged. When the repeat mode is selected, the weights of the new data are larger than the weights of the old data, which facilitates the tracking of slowly changing signals, and this averaging result will be displayed at the end of each scan.

When the repeat mode is selected, and the specified average number of scans is reached, all previous data is cleared and a rescan will be performed.


Average type: Calculates the average of the logarithmic amplitude values (unit: dB) of the signal envelopes measured within a signal collection unit. The average detection mode switches to video detection.

Power average: Calculates the average of the power (square of the amplitude) of the signal. The average detection mode switches to RMS (power) detection.

Voltage average: Calculates the average of the voltage values (unit: dB) of the signal envelopes measured within a signal collection unit. The average detection mode switches to voltage detection.

Measurement preset: restore the measurement mode/setting to the factory settings.

Adjacent Channel Power Ratio

Instruments.uni-trend.com 80 / 92

Figure 5-5 Adjacent Channel Power Ratio

To measure the main channel power, the previous channel and the next channel power.

To respectively give an adjacent channel to the main channel and the left and right channels, the main channel is centered on the center frequency point, and the left and right adjacent channels are symmetric with respect to the main channel.

The channel parameters are changed by setting the main channel bandwidth, the adjacent channel bandwidth and the adjacent channel interval (distance between adjacent channels and the center of the main channel), and calculate the individual channel power in the same way as the channel power algorithm, the ratio of the adjacent channel power to the main channel power is the adjacent channel power ratio.

Press [Meas] > Adjacent Channel Power Ratio to enter the following panel menu.

Measurement Setup

Average/Hold time (ON/OFF): Press the average number (ON) to specify the average number of scans used to calculate the measurement results, the scan number range is from 1 to 10,000. The user can change the average time by using the numeric key, rotary knob and arrow key or touch the panel menu. The average of the measurements will be displayed after each scan. Select (OFF) to turn off this function.

Average mode (exponential/repeat): Switching between the exponential and repeat mode, this averaging mode is used to determine the average mode of operation of the signal analyzer when the specified number of averaging scans has been reached.

When the exponential mode is selected, after the specified average number of scans is reached, each channel trace data is exponentially weighted, added to the previous average and averaged. When the repeat mode is selected, the weights of the new data are larger than the weights of the old data, which facilitates the tracking of slowly changing signals, and this averaging result will be displayed at the end of each scan.

When the repeat mode is selected, and the specified average number of scans is reached, all previous data is cleared and a rescan will be performed.

Average type: Calculates the average of the logarithmic amplitude values (unit: dB) of the signal envelopes measured within a signal collection unit. The average detection mode switches to video detection.

Power average: Calculates the average of the power (square of the amplitude) of the signal. The

Instruments.uni-trend.com 81 / 92

average detection mode switches to RMS (power) detection.

Voltage average: Calculates the average of the voltage values (unit: dB) of the signal envelopes measured within a signal collection unit. The average detection mode switches to voltage detection.

Noise bandwidth: Set the bandwidth of the main channel, the power of which is an integral of this bandwidth (default value: 2 MHz). The user can change the bandwidth of the main channel by using the numeric key, rotary knob and arrow key or touch the panel menu.

Integral bandwidth: Set the frequency width of the adjacent channel, the bandwidth of the adjacent channel is linked with the bandwidth of the main channel. The user can change the bandwidth of the adjacent channel by using the numeric key, rotary knob and arrow key or touch the panel menu.

Frequency offset: The interval of the main channel and the center frequency of the adjacent channel, adjusting the channel interval will simultaneously adjust the distance between the previous channel and the next channel from the main channel. The user can change the interval of the adjacent channel by using the numeric key, rotary knob and arrow key or touch the panel menu.

Offset side: Specifies which sideband to measure.

Negative: Measures only the negative (lower) sideband.

Positive: Measures only the positive (upper) sideband.

Both sides: Measures both positive and negative sidebands.

Measurement preset: Restore the measurement mode/setting to the factory settings.

Frequency Monitoring

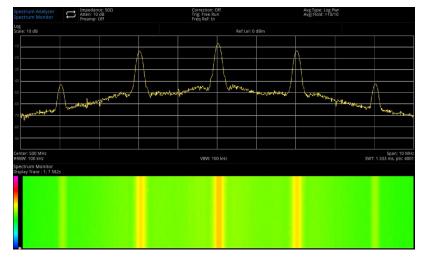


Figure 5-6 Frequency Monitoring

Instruments.uni-trend.com 82 / 92

The horizontal axis represents frequency. The vertical axis represents time. The color represents the energy strength of frequency spectrum.

It is used to detect intermittent spectrum, spectrum monitoring help you to observe how the signal changes over time.

Press [Meas] > Frequency Monitoring to enter the following panel menu.

Measurement Setup

Average/Hold time (ON/OFF): Press the average number (ON) to specify the average number of scans used to calculate the measurement results, the scan number range is from 1 to 10,000. The user can change the average time by using the numeric key, rotary knob and arrow key or touch the panel menu. The average of the measurements will be displayed after each scan. Select (OFF) to turn off this function.

Average mode (exponential/repeat): Switching between the exponential and repeat mode, this averaging mode is used to determine the average mode of operation of the signal analyzer when the specified number of averaging scans has been reached.

When the exponential mode is selected, after the specified average number of scans is reached, each channel trace data is exponentially weighted, added to the previous average and averaged. When the repeat mode is selected, the weights of the new data are larger than the weights of the old data, which facilitates the tracking of slowly changing signals, and this averaging result will be displayed at the end of each scan.

When the repeat mode is selected, and the specified average number of scans is reached, all previous data is cleared and a rescan will be performed.

Average type: Calculates the average of the logarithmic amplitude values (unit: dB) of the signal envelopes measured within a signal collection unit. The average detection mode switches to video detection.

Power average: Calculates the average of the power (square of the amplitude) of the signal. The average detection mode switches to RMS (power) detection.

Voltage average: Calculates the average of the voltage values (unit: dB) of the signal envelopes measured within a signal collection unit. The average detection mode switches to voltage detection.

Measurement preset: Restore the measurement mode/setting to the factory settings.

Instruments.uni-trend.com 83 / 92

Carrier to Noise Ratio

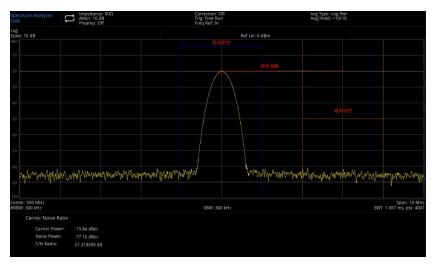


Figure 5-7 Carrier to Noise Ratio

Carrier to noise ratio measurement: carrier wave power, noise power and carrier to noise ratio Search for the maximum positive peak f1 as a carrier within the screen range and calculate the power within the carrier bandwidth centered on f1, which is the carrier power.

Set the frequency offset so that there is no carrier signal within the noise bandwidth, calculate the power within the noise bandwidth centered on f1+frequency offset, which is the noise power, and divide the carrier power by the noise power, which is the carrier-to-noise ratio.

Press [Meas] > Carrier to Noise Ratio to enter the following panel menu.

Measurement Setup

Average/Hold time (ON/OFF): Press the average number (ON) to specify the average number of scans used to calculate the measurement results, the scan number range is from 1 to 10,000. The user can change the average time by using the numeric key, rotary knob and arrow key or touch the panel menu. The average of the measurements will be displayed after each scan. Select (OFF) to turn off this function.

Average mode (exponential/repeat): Switching between the exponential and repeat mode, this averaging mode is used to determine the average mode of operation of the signal analyzer when the specified number of averaging scans has been reached.

When the exponential mode is selected, after the specified average number of scans is reached, each channel trace data is exponentially weighted, added to the previous average and averaged. When the repeat mode is selected, the weights of the new data are larger than the weights of the old data, which facilitates the tracking of slowly changing signals, and this averaging result will be displayed at the end of each scan.

When the repeat mode is selected, and the specified average number of scans is reached, all previous data is cleared and a rescan will be performed.

Average type: Calculates the average of the logarithmic amplitude values (unit: dB) of the signal envelopes measured within a signal collection unit. The average detection mode switches to video detection.

Power average: Calculates the average of the power (square of the amplitude) of the signal. The average detection mode switches to RMS (power) detection.

Voltage average: Calculates the average of the voltage values (unit: dB) of the signal envelopes measured within a signal collection unit. The average detection mode switches to voltage detection.

Carrier bandwidth: Set the bandwidth for the carrier wave to be measured, the carrier wave bandwidth is linked with the sweep bandwidth, and the noise bandwidth is linked with the frequency offset. The user can change the carrier wave bandwidth by using the numeric key, rotary knob and arrow key or touch the panel menu.

Noise bandwidth: Set the bandwidth for the noise to be measured, the noise bandwidth is linked with the sweep bandwidth, and the carrier wave bandwidth is linked with the frequency offset. The user can change the noise bandwidth by using the numeric key, rotary knob and arrow key or touch the panel menu.

Frequency offset: Set the difference value between the center frequency of carrier wave and the center frequency of the noise, the frequency offset is linked with the sweep bandwidth, and the carrier wave bandwidth is linked with the noise bandwidth. The user can change the frequency offset by using the numeric key, rotary knob and arrow key or touch the panel menu.

Measurement preset: Restore the measurement mode/setting to the factory settings.

Harmonic Wave

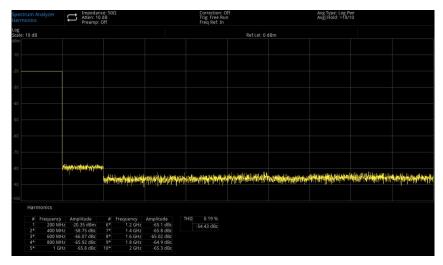


Figure 5-8 Harmonic Wave Measurement

Harmonic wave measurement: the amplitude of each harmonic and the total harmonic distortion of the carrier signal can be measured up to 10 harmonics.

THD is the total harmonic distortion

The harmonic analysis waveform is displayed as the concatenation of the zero sweep bandwidth waveforms of the individual harmonics. All the key in the **[FREQ]** menu will be hidden.

Press [Meas] > Harmonic Wave to enter the following panel menu.

Measurement Setup

Average/Hold time (ON/OFF): Press the average number (ON) to specify the average number of scans used to calculate the measurement results, the scan number range is from 1 to 10,000. The user can change the average time by using the numeric key, rotary knob and arrow key or touch the panel menu. The average of the measurements will be displayed after each scan. Select (OFF) to turn off this function.

Average mode (exponential/repeat): Switching between the exponential and repeat mode, this averaging mode is used to determine the average mode of operation of the signal analyzer when the specified number of averaging scans has been reached.

When the exponential mode is selected, after the specified average number of scans is reached, each channel trace data is exponentially weighted, added to the previous average and averaged. When the repeat mode is selected, the weights of the new data are larger than the weights of the old data, which facilitates the tracking of slowly changing signals, and this averaging result will be displayed at the end of each scan.

Instruments.uni-trend.com 86 / 92

When the repeat mode is selected, and the specified average number of scans is reached, all previous data is cleared and a rescan will be performed.

Average type: Calculates the average of the logarithmic amplitude values (unit: dB) of the signal envelopes measured within a signal collection unit. The average detection mode switches to video detection.

Power average: Calculates the average of the power (square of the amplitude) of the signal. The average detection mode switches to RMS (power) detection.

Voltage average: Calculates the average of the voltage values (unit: dB) of the signal envelopes measured within a signal collection unit. The average detection mode switches to voltage detection.

Basic harmonic: Set the frequency of basic harmonic. By default, other harmonic measurements will be taken at multiples of the specified fundamental frequency. The user can change the basic harmonic by using the numeric key, rotary knob and arrow key or touch the panel menu.

Harmonic wave: Set the harmonic time of measured carrier wave for calculating the total harmonic. The user can change the harmonic time by using the numeric key, rotary knob and arrow key or touch the panel menu.

Dwell time: Set the dwell time for the specified harmonic. In the zero sweep bandwidth, it will automatically achieve an equilibrium between the measuring speed and the precision. Increasing the dwell time decreases the measurement speed while improving the precision. The user can change the dwell time by using the numeric key, rotary knob and arrow key or touch the panel menu.

Measurement preset: Restore the measurement mode/setting to the factory settings.

6. System Prompt and Troubleshooting

System Prompt

The system prompts that the parameter settings for all operating modes are invalid and that default values are being used.

Name	Minimum	Maximum
Center frequency	-79.999995 Hz	26.699999995 GHz
Sweep bandwidth	Zero sweep bandwidth	26.780000000 GHz
Start frequency	-80 MHz	26.699999990 GHz
Cut-off frequency	-79.999990 MHz	26.7 GHz
Frequency offset	-100G Hz	100 GHz
Stepped center frequency	1 Hz	26.7 GHz
reference level	-170 dBm	30 dBm
Input attenuation	0 dB	50 dB
Scale	0.1 dB	20 dB
Reference level offset	-327.6 dB	327.6 dB
Resolution bandwidth	1 Hz	8 MHz
Video bandwidth	1 Hz	8 MHz
VBW: 3 dB RBW	0.000001	8000000
Scanning time	1 ms	4 ks
Scanning count	31	100001
Trace operation offset	-100 dB	100 dB
In-band bandwidth	0 Hz	53.0 GHz
N dB point	-140 dB	-0.01 dB
Peak threshold	-697.6 dBm	457.6 dBm
Peak offset	0 dBm	100 dBm
Average/Hold time	1	10000
Display line	-697.6 dBm	457.6 dBm
Integral bandwidth	10 Hz	26.78 GHz
Start time	0 s	10 ms
Stop time	0 s	10 ms
% OBW power	10%	99.99%

Instruments.uni-trend.com 88 / 92

x dB	-100 dB	-0.1 dB
Noise bandwidth (adjacent channel power)	10 Hz	26.78 GHz
Integral bandwidth (adjacent channel power)	10 Hz	26.78 GHz
Frequency offset (adjacent channel power)	0 Hz	13.389999995 GHz
Carrie wave bandwidth (carrier to noise ratio)	10 Hz	26.779999980 GHz
Noise bandwidth (carrier to noise ratio)	10 Hz	13.389999995 GHz
Frequency offset (carrier to noise ratio)	10 Hz	13.389999995 GHz
Basic harmonic	100 Hz	13.250000000 GHz
Harmonic	2	10

Troubleshooting

This chapter lists the possible faults and troubleshooting methods of the signal analyzer. Please follow the corresponding steps to handle it, if these methods are not working, please contact UNI-T and provide your machine device information (acquisition method: **[System] >System Information**).

- After pressing the power soft switch, the signal analyzer still display a blank screen, and nothing is displayed.
 - a. Check whether the power connector is properly connected and the power switch is turned on.
 - b. Check whether the power supply meets the requirements.
 - c. Check whether the fuse of the machine is installed or blown.
- 2. Press the power switch, if the signal analyzer still display a blank screen and nothing is displayed.
 - a. Check the fan. If the fan is rotating but the screen is off, the cable to the screen may be loose.
 - b. Check the fan. If the fan does not rotate and the screen is off, it represents the instrument is not enabled.
 - c. In case of the above faults, do not disassemble the instrument by yourself. Please contact UNI-T immediately.
- 3. Spectral line is not updated for a long time.
 - a. Check whether the current trace is in update state or multiple averaging state.

b. Check whether the current is meet the restriction conditions. Check the restriction settings and whether there are restriction signals.

- c. In case of the above faults, do not disassemble the instrument by yourself. Please contact UNI-T immediately.
- d. Check whether the current mode is in a single sweep state.
- e. Check whether the current sweep time is too long.
- f. Check whether the demodulation time of the demodulation listening function is too long.
- g. Check whether the EMI measurement mode is not sweeping.
- 4. The measurement results are incorrect or not accurate enough.

Users can obtain detailed descriptions of technical index from the back of this manual to calculate system errors and check measurement results and accuracy problems. To achieve the performance listed in this manual, you need:

- a. Check whether external device is properly connected and work.
- b. Have a certain understanding of the measured signal and set appropriate parameters for the instrument.
- c. Measurement should be performed under certain conditions, such as preheating for a period of time after starting up, specific working environment temperature, etc.
- d. Calibrate the instrument regularly to compensate for measurement errors caused by instrument aging.

If you need to calibrate the instrument after the guaranteed calibration period, please contact UNI-T company or obtain paid service from authorized measurement institutions.

Instruments.uni-trend.com 90 / 92

7. Appendix

Maintenance and Cleaning

(1) General Maintenance

Keep the instrument away from the direct sunlight.

Caution

Keep sprays, liquids and solvents away from the instrument or probe to avoid damaging the instrument or probe.

(2) Cleaning

Check the instrument frequently according to the operating condition. Follow these steps to clean the external surface of the instrument.

Please use a soft cloth to wipe the dust outside the instrument.

When cleaning the LCD screen, please pay attention and protect the transparent LCD screen.

When cleaning the dust screen, use a screwdriver to remove the screws of the dust cover and then remove the dust screen. After cleaning, install the dust screen in sequence.

Please disconnect the power supply, then wipe the instrument with a damp but not dripping soft cloth. Do not use any abrasive chemical cleaning agent on the instrument or probes.

Warning

Please confirm that the instrument is completely dry before use, to avoid electrical shorts or even personal injury caused by moisture.

Instruments.uni-trend.com 91 / 92

Limited Warranty and Liability

UNI-T guarantees that the Instrument product is free from any defect in material and workmanship within three years from the purchase date. This warranty does not apply to damages caused by accident, negligence, misuse, modification, contamination, or improper handling. If you need a warranty service within the warranty period, please contact your seller directly. UNI-T will not be responsible for any special, indirect, incidental, or subsequent damage or loss caused by using this device. For the probes and accessories, the warranty period is one year. Visit instrument.uni-trend.com for full warranty information.

Learn more at: www.uni-trend.com

Register your product to confirm your ownership. You will also get product notifications, update alerts, exclusive offers and all the latest information you need to know.

UNI-T. is the licensed trademark of UNI-TREND TECHNOLOGY (CHINA) CO., Ltd.

UNI-T products are protected under patent laws in China and internationally, covering both granted and pending patents. Licensed software products are the properties of UNI-Trend and its subsidiaries or suppliers, all rights reserved. This manual contains information that replaces all earlier published versions. The product information in this document subject to update without notice. For more information on UNI-T Test & Measure Instrument products, applications, or service, please contact UNI-T instrument for support, the support center is available on www.uni-trend.com ->instruments.uni-trend.com

https://instruments.uni-trend.com/ContactForm/

Headquarter

UNI-TREND TECHNONOLGY
(CHINA) CO., Ltd.
Address: No.6, Industrial North 1st
Road, Songshan Lake Park,
Dongguan City, Guangdong
Province, China

Tel: (86-769) 8572 3888

Europe

UNI-TREND TECHNOLOGY EU GmbH Address: Affinger Str. 12 86167 Augsburg Germany

Tel: +49 (0)821 8879980

North America

UNI-TREND TECHNOLOGY US INC. Address: 3171 Mercer Ave STE 104, Bellingham, WA 98225 Tel: +1-888-668-8648