


1.SCPI

This chapter contains the following contents.

 Command Parser — Learn about a certain rule of command parser

 Command Syntax — Write rule of command line

 Query Syntax — Query write rule of query command

 Query Response —Query the format of query respond

 Command Reference

This chapter provides all SCPI commands used by the instrument, so user can totally control all

functions of the instrument through these command.

1.1 Parse Command String

The host computer can send a command string to the instrument, and the instrument parser will start to

analysis the command when capture an end mark (\n) or buffer overflow.

For Example Valid command string:

AAA:BBB CCC;DDD EEE;:FFF

The instrument command parser is responsible for all command parsing and execution, and you must

understand its parsing rules before writing a program.

1.1.1 Command Parse Rule

1. Command parser only parses and responds to ASCII data.

2. The end mark of SCPI command string must be NL (‘ \n’ ASCII 0x0A). The command parser

does not start executing a command string until it receives an end mark or a buffer overflow.

3. If handshake command is open, the command parser sends each character back to the host

as soon as it is received, and the host can continue to send the next character only after it

receives this returned character.

4. The command parser will terminate the parsing immediately after parsing an error, and the

current command will be invalidated.

5. The command parser will immediately terminate the current command string analysis when

analyzing the query command and the followed character string will be ignored.

6. The command parser is not case-insensitive.

7. The command parser supports command abbreviation, abbreviation format see the following



section.

1.1.2 Symbol Stipulation and Definition

This section has some symbols that they are not the part of command tree, but for better understanding

of command string.

< > Word in angle brackets represents the parameter of command

[ ] Word in square brackets represents the optional command.
{ } If the braces contains several parameter items, it indicates only one of them can be selected.

( ) The abbreviated form of the parameter is enclosed in parentheses.

Capital letter Abbreviation format of command.

1.1.3 Command Tree Structure

SCPI commands have a tree-like structure with three level (note: the command parser of this instrument

can parse any level), where the highest level is called the subsystem command. Its subordinate can only

be valid when subsystem command is selected. SCPI uses a colon (:) to separate high level commands

from low level commands.

Figure 9- 1 Command Tree Structure

For Example ROOT:CCC:DDD ppp
ROOT Sub-system command

CCC Second level
DDD Third level

ppp Parmeter

1.2 Command and Parameter

A command tree consists of Command and [Parameter], use one blank (ASCII: 20H) to separate.

For Example AAA:BBB 1.234
Command [Parameter]

1.2.1 Command

The command string can be long string form or abbreviation form, long string form is for engineer

to understand string meaning; abbreviation form is for write.



1.2.2 Parameter

1. Single command word command, no parameter.

For Example, AAA:BBB

2. Parameter can be character string form, and its abbreviation form should obey “command

abbreviation rule” at last section.

For Example, AAA:BBB 1.23

3. Parameter can be numeric value.

<integer>: 123, +123, -123

<float>: Floating point number

<fixfloat>: Fixed floating point number , such as 1.23, -1.23

<Sciloat>: Floating point number with scientific notation, such as 1.23E+4, +1.23e-4

<mpfloat>: Floating point number with multiplying power, such as 1.23k, 1.23M, 1.23G, 1.23u

Table 9- 1 Abbreviation of Multiplying Power

Numeric Value Multiplying power

1E18 (EXA) EX

1E15 (PETA) PE

1E12 (TERA) T

1E9 (GIGA) G

1E6 (MEGA) MA

1E3 (KILO) K

1E-3 (MILLI) M

1E-6 (MICRO) U

1E-9 (NANO) N

1E-12 (PICO) P

1E-15 (PEMTO) F

1E-18 (ATTO) A

i The multiplying power is not case-insensitive, so the written is different from standard name.

1.2.3 Separator

The command parser only receive allowed separator and other separators will make error of “Invalid

separator”.

These separators are semicolon mark, colon mark, question mark and space mark.



“;”: Semicolon mark is used to separate two commands.
For Example, AAA:BBB 100.0 ; CCC:DDD

“:”: Colon mark is used to separate command tree or restart command tree.
For Example, AAA : BBB : CCC 123.4; : DDD : EEE 567.8

“?”: Question mark is used to query.
For Example, AAA ?

“□”: Space mark is used to separate parameter.
For Example, AAA:BBB□1.234

1.2.4 Error Code

Error Code Description
*E00 No error
*E01 Bad command
*E02 Parameter error
*E03 Missing parameter
*E04 Buffer overrun
*E05 Syntax error
*E06 Invalid separator
*E07 Invalid multiplier
*E08 Numeric data error
*E09 Value too long
*E10 Invalid command
*E11 Unknown error

2.Command Reference

All commands is explained by the subsystem command order.

 DISPlay Display subsystem

 FUNCtion Function subsystem

 CORRection Correction subsystem

 COMParator Comparator subsystem

 SYSTem System subsystem

 TRIGger Trigger subsystem

 FETCh? Fetch result subsystem

 ERRor Error subsystem

Common Command

 IDN? Query subsystem of instrument information

 TRG Trigger and acquire data



2.1 DISPlay Subsystem

DISPlay subsystem is used to switch different display page or display a string of text in page hint tab.

Figure 9- 2 DISPlay Subsystem Tree

DISPlay :PAGE {TEST,SETUP(MSET),COMParator,CORRECTION(CSET),FILE,SYSTem,S
YSTEMINFO(SINF)}

:LINE <string>

2.1.1 DISPlay:PAGE

DISP:PAGE is used to switch to the specified page.

Command Syntax DISPlay:PAGE <Page name>
Parameter < Page name > includes:

TEST Measurement display page
SETUP (MSET) Setup page
COMParator Comparator page
CORRection Correction page
FILE File management page
SYSTem System configuration page
SYSTEMINFO (SINF) System information page

For Example Send > disp:page setup <NL> // Switch to the setup page
Query Syntax DISP:PAGE?
Query Response < Page name > abbreviation

test
mset
comp
cset
file
syst
sinf

For Example Send > disp:page? <NL>
Return > test<NL>

2.1.2 DISP:LINE

DISP:LINE is used to display a string of text in the tab on the page bottom. The text can be displayed up

to 30 characters.

Command Syntax DISPlay:LINE <string>
Parameter <string> up to 30 characters
For Example Send >DISP:LINE “This is a Comment.” <NL>

2.2 FUNCtion Subsystem

Figure 9- 3 FUNCtion Subsystem Tree

FUNCtion :RANGe {Range number, max, min}
:MODE {AUTO,HOLD,NOMinal}

:RATE {SLOW,MED,FAST }
:TC : COEFficient <float>

:REFEr <float>

The parameter set by FUNCtion subsystem will not be saved in the system. It need to reset the setting

when next boot up.



2.2.1 FUNCtion:RANGe

FUNC:RANG is used to set the range mode and range number.

Command Syntax FUNCtion:RANGe {<Range number>,min,max}
Parameter <Range number>

0~9 (AT517)
0~5 (AT517L)
min indicates the minimum range
max indicates the maximum range

For Example Send >FUNC:RANG 5<NL> // Switch to range 5 (1 kΩ)
Query Syntax FUNC:RANG?
Query Response Range number0~9 (AT517)
For Example Send >FUNC:RANGE? <NL>

Return > 5<NL>

2.2.2 FUNCtion:RANGe:MODE
FUNC:RANG:MODE is used to switch the range mode.

Command Syntax FUNCtion:RANGe:MODE {AUTO,HOLD(MANual),NOMinal}
For Example Send >FUNC:RANG:MODE NOM<NL> // Switch to the nominal mode
Query Syntax FUNC:RANG:MODE?
Query Response {AUTO,HOLD,NOM}

2.2.3 FUNCtion:RATE
FUNC:RATE or FUNC:SPEED is used to set the test speed.

Command Syntax FUNCtion:RATE {SLOW,MED,FAST}
For Example Send >FUNC:RATE MED<NL> // Set to middle speed
Query Syntax FUNC:RATE?
Query Response {SLOW,MED,FAST}

2.2.4 FUNCtion:TC
FUNC:TC is used to turn on/off temperature compensation.

Command Syntax FUNCtion:TC {ON,OFF,1, 0}
For Example Send >FUNC:TC ON <NL> // Turn on temperature compensation
Query Syntax FUNC:TC?
Query Response {ON,OFF}

2.2.5 FUNCtion:TC: COEFficient
FUNC:TC:COEFficient is used to set the temperature coefficient.

Command Syntax FUNCtion:TC: COEFficient <float>
FUNCtion:TC: A <float>
Note: The unit of temperature coefficients A is ppm, e.g. the temperature coefficient of silver-copper at 20°C is 3930
ppm.

For Example Send >FUNC:TC:COEF 3930<NL> // Set the temperature coefficient to 3930 ppm
Send >FUNC:TC:COEF 3930<NL> // Set the temperature coefficient to 3930 ppm

Query Syntax FUNC:TC:COEF?
FUNC:TC:A?

Query Response <fixfloat>
For Example Send >FUNC:Tc:A? <NL>

Response > +3930.0<NL>

2.2.6 FUNCtion:TC:REFErence
FUNC:TC:REFE is used to set the reference temperature.

Command Syntax FUNCtion:TC:REFErence <float>
FUNCtion:TC:T0 <float>



Note: The temperature unit is ℃.

For Example Send >FUNC:TC:T0 25<NL> // Set the reference temperature to 25 ℃.
Query Syntax FUNC:TC:REFE?

FUNC:TC:T0?
Query Response <fixfloat>
For Example Send >FUNC:TC:REFE? <NL>

Response > +20.00<NL>

2.2.7 FUNCtion:DT
FUNC:DC is used to turn on/off the temperature conversion function.

Command Syntax FUNCtion:DT {ON,OFF,1, 0}
For Example Send >FUNC:DC ON <NL> // Turn on the temperature conversion function.
Query Syntax FUNC:DT?
Query Response {ON,OFF}
Note The temperature conversion function is only available when the temperature

sensor is connected to the instrument.

2.2.8 FUNCtion:DT:T1
FUNC:DT:T1 is used to set the initial temperature.

Command Syntax FUNCtion:DT:T1 <float>
For Example Send >FUNC:DT:T1 20<NL> // Set the reference temperature to 25 ℃.
Query Syntax FUNC:DT:T1?
Query Response <fixfloat>
For Example Send >FUNC:DT:T1? <NL>

Response > +20.00<NL>
Note 1. The initial temperature T1 corresponds to the temperature at the initial

resistance R1.
2. The temperature unit is ℃.

2.2.9 FUNCtion:DT:R1
FUNC:DT:R1 is used to set the resistance at the initial temperature.

Command Syntax FUNCtion:DT:R1 <float>
For Example Send >FUNC:DT:R1 100<NL> // Set the initial resistance to 100 Ω.
Query Syntax FUNC:DT:R1?
Query Response <Scifloat>
For Example Send >FUNC:DT:R1? <NL>

Response > 1.00000e+02<NL>
Note 1. The initial temperature T1 corresponds to the initial resistance R1.

2. The unit is Ω.

2.2.10 FUNCtion:DT:K
FUNC:DT:K is used to set the reciprocal of the temperature coefficient of the measured part at 0°C (1/α).

Command Syntax FUNCtion:DT:K <float>
FUNCtion:DT:K <float>
Note: The temperature unit is ℃.

For Example Send >FUNC:DT:K 234.5<NL>
Query Syntax FUNC:DT:K?
Query Response <fixfloat>
For Example Send >FUNC:DT:K? <NL>

Response > +234.5<NL>
Note K is the reciprocal of the temperature coefficient (the standard is 0℃).



COMParator Subsystem

COMP subsystem is used to set the parameter of comparator.

Figure 9- 4 COMParator Subsystem Tree

COMParator [:STATe] {OFF,#-BIN} (AT517)
{OFF,ON} (AT517L)

:BEEP {OFF,PASS(OK),FAIL(NG)}
:MODE {ABS,PER,SEQ}
:NOMinal <float>
:BIN <Scale number 1~10>, <float lower limit>, <float upper

limit>

2.2.11 COMParator[:STATe]
COMP[:STATe] is used to turn off the comparator or set the scale number.

Command Syntax COMParator[:STATe] {OFF,#-BIN} (AT517)
COMParator[:STATe] {OFF,ON} (AT517L)

Parameter <#-BIN> includes: 1-BIN ~ 6-BIN
For Example Send >COMP:STAT 6-BIN<NL> // Turn on the comparator and set to 6-BIN.

Send >COMP:STAT OFF<NL> // Turn on the comparator.
Query Syntax COMP[:STAT]?
Query Response {OFF,#-BIN}

2.2.12 COMParator:BEEP
COMP:BEEP is used to turn on the beeper.

Command Syntax COMParator:BEEP {OFF,OK,NG}
For Example Send >COMP:BEEP OK<NL> // Qualified beeper.
Query Syntax COMP:BEEP?
Query Response {OFF,OK,NG}

2.2.13 COMParator:MODE
COMP:MODE is used to set the comparator mode.

Command Syntax COMParator:MODE {ABS,PER,SEQ}
For Example Send >COMP:MODE SEQ // Switch to sequence compare mode.
Query Syntax COMP:MODE?
Query Response {ABS,PER,SEQ}

2.2.14 COMParator:NOMinal
COMP:NOM is used to set the nominal value.

Command Syntax COMParator:NOMinal <float>
For Example Send >COMP:NOM 1.0000k // Set the nominal value to 1 k.

Send >COMP:NOM 1E3 // Set the nominal value to 1 k.
Send >COMP:NOM 1000 // Set the nominal value to 1 k.

Query Syntax COMP:NOM?
Query Response <scifloat>
For Example Send >COMP:NOM? <NL>

Return > 1.0000E+03<NL> // Set the nominal value to 1 k.

2.2.15 COMParator:BIN
COMP:BIN is used to set the nominal value.

Command Syntax COMParator:BIN <Scale number1~6>,<float lower limit>,<float upper limit>
(*AT517)
COMParator:BIN <float lower limit>,<float upper limit> (*AT517L)



For Example Send >COMP:BIN 1,-10,+10 // If in percentage sorting mode: the lower limit of
BIN1 is -10%, the upper limit is 10%.

Query Syntax COMP:BIN? <1~6>
Query Response <scifloat>,<scifloat>
For Example Send >COMP:BIN? 1<NL>

Return > -10.000E+00,+10.000E+00<NL> //-10,+10

2.3 TRIGger Subsystem

Figure 9- 5 TRIGger Subsystem Tree

TRIGger [:IMMediate]
:SOURce {INT,EXT}
:DELAy <float>

TRG

TRIGger is used to set the trigger source and to generate one trigger.

2.3.1 TRIGger[:IMMediate]
TRIG[:IMM] generates one trigger when the trigger source is set to EXT, but does not return the data of

trigger test. The TRG instruction is required to return data.

Command Syntax TRIGger[IMMediate]
For Example Send >TRIG<NL> // The instrument will stop after one test.

2.3.2 TRIGger:SOURce
TRIG:SOUR is used to set the trigger source.

Command Syntax TRIGger:SOURce {INT,EXT}
For Example Send >TRIG:SOUR BUS<NL> // Set to bus trigger mode.
Query Syntax TRIG:SOUR?
Query Response <INT,EXT>

2.3.3 TRIGger:DELAy
TRIG:DELAy is used to set the trigger delay.

Command Syntax TRIGger:DELAy {0,<float>}
Parameter 0: turn off the trigger delay.
Parameter <float>: 0.001~9.0

For Example Send >TRIG:DELA 0.1<NL> // Set the trigger delay to 0.1s.
Send >TRIG:DELA 10m<NL> // Set the trigger delay to 10ms.

Query Syntax TRIG:DELA?
Query Response 0.1

2.3.4 TRG
When TRG (trigger source) sets to EXT, it generates one trigger and return the data of trigger test.

Command Syntax TRG
For Example Send >TRG<NL> // The instrument performs one time and return test data.

Return > +9.9651e+01,BIN00 <NL>

2.4 FETCh? Subsystem

FETCh? is used to acquire test data. Before using this command, [Result Sending] field under the

<System Configuration> screen should set to [FETCH].



FETCh？command will return test data.

Figure 9- 6 FETCh? Subsystem Tree

FETCh? <NONE>
:RT?
:T2?

2.4.1 FETCh?
Fetch the measured result.

Query Syntax FETCh?
Query Response <scifloat>, {BIN0~BIN6 }

BIN0 indicates unqualified.
For Example Send >FETC? <NL>

Return >+9.9651e+01,BIN0<NL>

2.4.2 FETCh:RT?
Fetch the current room temperature.

Query Syntax FETCh:RT?
Query Response <Fixfloat>
For Example Send >FETC:RT? <NL>

Return >+27.94<NL>
Note 1. If sensor is not inserted, or temperature compensation and temperature

conversion are not turned on, +999.99 will be returned.
2. The temperature is ℃.

2.4.3 FETCh:T2?
Fetch the current room temperature.

Query Syntax FETCh:T2?
Query Response <Fixfloat>
For Example Send >FETC:T2? <NL>

Return >+19.91<NL>
Note 1. If sensor is not inserted, or temperature compensation and temperature

conversion are not turned on, +999.99 will be returned.
2. The temperature is ℃.

2.5 SYSTem Subsystem

SYSTem subsystem is used to set the parameter of system.

The data set by SYSTem subsystem will not be saved internal of the instrument.

Figure 9- 7 SYSTem Subsystem Tree

SYSTem :LANGuage {ENGLISH,CHINESE,EN,CN}
:TIME <YEAR>,<MONTH>,<DAY>,<HOUR>,<MINUTE>,<SECOND>
:KEYLock(KLOC) {ON(1),OFF(0)}
:BEEP {ON(1),OFF(0)}
:SHAKEHAND(SHAK) {ON(1),OFF(0)}
:UPLOAD(UPLD) {FETCh,AUTO}

2.5.1 SYSTem:LANGuage
Set the instrument’s system.



Command Syntax SYSTem:LANGuage {ENGLISH,CHINESE,EN,CN}
For Example Send >SYST:LANG EN // Set to English.
Query Syntax SYST:LANG?
Query Response {ENGLISH,CHINESE}

2.5.2 SYSTem:TIME
Set the system’s time.

Command Syntax SYSTem:TIME <YEAR>,<MONTH>,<DAY>,<HOUR>,<MINUTE>,<SECOND>
For Example Send >SYST:TIME 2016,12,30,11,18,31 // 2016-12-30 11:18:31
Query Syntax SYSTem:TIME?
Query Response <YEAR>-<MONTH>-<DAY> <HOUR>:<MINUTE>:<SECOND>
For Example Send >SYST:TIME?

Receive > 2016-12-30 11:18:31

2.5.3 SYSTem:KEYLock or SYSTem:KLOCk
Key lock setup.

Command Syntax SYSTem:KEYLock {ON,OFF,0,1}
SYSTem:KLOCk {ON,OFF,0,1}

For Example Send >SYST:KEYL OFF // Unlock the key.
Query Syntax SYSTem:KEYLock?

SYSTem:KLOCk?
Query Response {on,off}

2.5.4 SYSTem:BEEPer
Key sound, this command is not affect the comparator’s beeper.

Command Syntax SYSTem:BEEPer {OFF,ON,0,1}
Parameter {OFF,ON,0,1}

OFF/0: Turn off the beeper
ON/1: Turn on the beeper

For Example Send >SYST:BEEP OFF
Query Syntax SYSTem:BEEPer?
Query Response {OFF,ON}

2.5.5 SYSTem:SHAKhand (Return data header)

When the communication handshake is opened, the instrument will original return the received

commands to the host computer, and then returns the data.

Command Syntax SYSTem:SHAKhand {ON,OFF,0,1}
SYSTem:HEADer {ON,OFF,0,1}

For Example Send >SYST:SHAK ON
Send >SYST:HEAD ON

Query Syntax SYSTem:SHAKhand?
SYSTem:HEADer?

Query Response {on,off}

2.5.6 SYSTem:UPLOAD (UPLD) (Send test result)
SYSTem:UPLOAD (UPLD) can set the send mode for data, automatic or FETCH.

Command Syntax SYSTem:UPLOAD {FETCH,AUTO}
Parameter {FETCH,AUTO}

FETCH: The data needs to be returned to the host by the command fetch?, the
instrument is passively sent.
AUTO: The data is automatically sent to the host computer after each test is
completed, and the instrument proactively send the results.

For Example Send >SYST:UPLD AUTO // Set to automatic send
Query Syntax SYST:UPLD?



Query Response {FETCH,AUTO}

2.6 CORRect Subsystem

CORR subsystem is used to complete one short-circuit correction.

Figure 9- 8 CORRect Subsystem Tree

CORRect :STATe {ON,OFF,0,1}
:SHORt

2.6.1 CORRect:STATe
Command Syntax SYSTem:STATe {OFF,ON,0,1}
Parameter {OFF,ON,0,1}

OFF/0: Turn off the short-circuit zero clearing
ON/1: Short-circuit zero clearing is valid.

For Example Send >SYST:STAT OFF
Query Syntax SYSTem:STAT?
Query Response {OFF,ON}

2.6.2 CORRect:SHORt
CORR:SHOR is used to complete one short-circuit correction. Before sending this command, the test

terminal should be short-circuit.

Command Syntax CORRect:SHORt
For Example Send >CORRect:SHORt<NL>

Return > Short Clear Zero Start. <NL> // Hint: Zero clearing is start.
Return > PASS<NL> // Hint: Zero clearing is pass (FAIL)

2.7 FILE (MMEM) Subsystem

FILE (MMEM) subsystem is used to manage file, the user can save the parameter to internal flash

memory or read the flash file to the system.

Figure 9- 9 FILE (MMEM) Subsystem Tree

FILE
MMEM

:SAVE <No parameter> or <File number 0-9>
:LOAD <No parameter> or <File number 0-9>
:DELete <File number 0-9>

2.7.1 FILE:SAVE (Save file)

FILE:SAVE can save the current settings to the current file or the specified file.

Command Syntax FILE:SAVE
FILE:SAVE <File No. 0-9>

For Example Send >FILE:SAVE // Save to the current file
Send >FILE:SAVE 1 // Save to the File 1

2.7.2 FILE:LOAD (Read file)

FILE:LOAD can read file data to the system.

Command Syntax FILE:LOAD
FILE:LOAD <File No. 0-9>

For Example Send >FILE:LOAD // Read the current file data to the system.
Send >FILE:LOAD 1 // Read the data of File 1 to the system.

2.7.3 FILE:DELete (Delete the specified file)
FILE:DELete can delete the data of the specified file.



Command Syntax FILE:DELete <File No. 0-9>
For Example Send >FILE:DEL 1 // Delete the specified file.
Note Delete the current file will not affect the system parameter.

2.7.4 SAV
SAV can save the current settings to the current file.

Command Syntax SAV = FILE:SAVE
For Example Send >SAV // Save the current settings to the current file.

2.7.5 RCL
RCL can read the current file data to the system.

Command Syntax RCL = FILE:LOAD
For Example Send >FILE:LOAD // Read the current file data to the system.

2.8 IDN? Subsystem

Figure 9- 10 IDN? Subsystem Tree

IDN? IDN? subsystem is used to return the version number of instrument.

Query Syntax IDN?
Query Response <MODEL>,<Revision>,<SN>,< Manufacturer>
For Example Send >IDN? <NL>

Return > UT3513,REV A1.0,0000000,UNI-T<NL>

2.9 ERRor Subsystem

Error subsystem is used to acquire the previous error information.

Query Syntax ERRor?
Query
Response Error string

For Example Send >ERR?<NL>
Return > no error.<NL>

Error Code
Error Code Description

*E00 No error
*E01 Bad command
*E02 Parameter error
*E03 Missing parameter
*E04 buffer overrun
*E05 Syntax error
*E06 Invalid separator
*E07 Invalid multiplier
*E08 Numeric data error
*E09 Value too long
*E10 Invalid command
*E11 Unknown error



3.Modbus (RTU) Communication Protocol

& This chapter contains the following contents.

 Data Format — Learn about the communication format of Modbus
 Function
 Variable Region
 Function Code

3.1 Data Format

Following Modbus (RTU) communication protocol, the instrument responds to the instruction of upper

computer and returns the standard response frame.

3.1.1 Command Frame
Figure 10- 1 Modbus Command Frame

Table 10- 1 Description of Command Frame

It needs mute interval time of 3.5 character at least.
Slave-station
Address

1 byte

Modbus supports 00~0x63 slave station

It is specified as 00 for uniform broadcasting

If the instrument does not have optional RS485, the default

slave station address is 0x01

Function Code 1 byte

0x03: read multiple registers

0x04: =03H, not use

0x06: write a single register, which can replace by 10H

0x08: echo test (only for debugging)

0x10: write multiple registers

Data The specified register address, quantity and content

CRC-16 2 bytes, LSB (least significant bit)

Cyclic Redundancy Check

Calculating all the data from slave station address to the last

data, get CRC-16 check code



3.1.2 CRC-16 Calculation Method
1. Set the initial value of CRC-16 register to 0xFFFF.

2. Performs an XOR operation on the CRC-16 register and the first byte of the message, and

returns the result to the CRC register.

3. Fill the MSB with zero and shift the CRC register to right by 1 bit.

4. If the bit shifted from LSB is “0”, repeat step 3 (process the next shift bit). If the bit shifted

from LSB is “1”, XOR operation is performed on CRC register and 0xA001, and the result is

returned to CRC register.

5. Repeat execute the step 3 and step 4 until move 8 bits.

6. If the information processing is not finished yet, then perform an XOR operation on the

CRC-register and the next Byte of the message and return to the CRC register. It repeat

from the step 3.

7. The result of the calculation (the value of the CRC Register) is appended to the information

from the lower Byte.

The following is a CRC calculation function of VB language.

FUNCTION CRC16(DATA() AS BYTE) AS BYTE()
IM CRC16LO AS BYTE, CRC16HI AS BYTE 'CRC REGISTER
IM CL AS BYTE, CH AS BYTE 'POLYNOMIAL CODE &HA001
IM SAVEHI AS BYTE, SAVELO AS BYTE
IM I AS INTEGER
IM FLAG AS INTEGER
RC16LO = &HFF
RC16HI = &HFF
L = &H1
H = &HA0
OR I = 0 TO UBOUND(DATA)

CRC16LO = CRC16LO XOR DATA(I) 'XOR EACH DATA AND CRC REGISTER
FOR FLAG = 0 TO 7

SAVEHI = CRC16HI
SAVELO = CRC16LO
CRC16HI = CRC16HI \ 2 'MOVE HIGH BIT TO RIGHT BY ONE BIT
CRC16LO = CRC16LO \ 2 ' MOVE LOW BIT TO RIGHT BY ONE BIT
IF ((SAVEHI AND &H1) = &H1) THEN 'IF THE LAST BIT OF HIGH BIT IS 1

CRC16LO = CRC16LO OR &H80 'THEN LOW BIT MOVE TO RIGHT AND FILL 1
ON THE FRONT

END IF 'OTHERWISE, IT AUTOMATICALLY FILL 0
IF ((SAVELO AND &H1) = &H1) THEN 'IF LSB IS 1, OXR POLYNOMIAL CODE

CRC16HI = CRC16HI XOR CH
CRC16LO = CRC16LO XOR CL

END IF
NEXT FLAG

EXT I
IM RETURNDATA(1) AS BYTE
ETURNDATA(0) = CRC16HI 'CRC HIGH BIT
ETURNDATA(1) = CRC16LO 'CRC LOW BIT
RC16 = RETURNDATA
END FUNCTION

Caculated CRC-16 data should append to the end of command frame.
For example, 1234H:



Figure 10- 2 Modbus Additional CRC-16 Value

3.1.3 Response Frame
Except the instruction of 00H slave address boardcast, other slave station address will returns

response frame.

Figure 10- 3 Normal Response Frame

Figure 10- 4 Exceptional Response Frame

Table 10- 2 Description Exceptional Response Frame

Slave-station
Address

1 byte

Original return slave-station address

Function Code 1 byte

0x03: read multiple registers

0x04: =03H, not use

0x06: write a single register, which can replace by 10H

0x08: echo test (only for debugging)

0x10: write multiple registers

Error Code Exceptional code

0x01 Function code error (function code does not support)
0x02 Register error (Register does not exist)
0x03 Data error
0x04 Execution error

CRC-16 2 bytes, LSB (least significant bit)

Cyclic Redundancy Check

Calculating all the data from slave station address to the last

data, get CRC-16 check code



3.1.4 No Response
The instrument does not handle and response any case as follows, it may occurs communication

time-out.

1. Slave station address error

2. Transmission error

3. CRC-16 error

4. Bit error, for example, total bit of function code 0x03 must be 8 and received bit should less than or

greater than 8 bytes.

5. It represents broadcast address when the slave station is 0x00. The instrument has no response.

3.1.5 Error Code
Table 10- 3 Description of Error Code

Error Code Name Description Priority
0x01 Function code

error

Function code does not support 1

0x02 Register error Register does not exist 2

0x03 Data error Quantity of register or byte error 3

0x04 Execution

error

Invalid data, write data is not in the

allowed range

4

3.2 Function Code

The instrument can only support several function code. The other function code will responses

error frame.

Table 10- 4 Function Code

Function Code Name Description
0x03 Read multiple

registers
Read data of multiple consecutive register

0x04 Same with
0x03

Replace by 0x03

0x08 Echo test Original return received data
0x10 Write multiple

registers
Write multiple consecutive register

3.3 Register

The register quantity of the instrument is 2-byte mode, it requires that it must write 2 bytes for

each time, for example, speed register is 0x3002, data is 2 bytes, and the numerical value must

be written to 0x0001.

Data:



The instrument supports the following numerical value.

1. 1 register, double byte (16 bits) integer, for example, 0x64 → 00 64

2. 2 registers, four bytes (32 bits) integer, for example, 0x12345678 → 12 34 56 78

3. 2 registers, four bytes (32 bits) single float-point number, 3.14 → 40 48 F5 C3

3.4 Read Multiple Registers

Figure 10- 5 Read Multiple Registers (0x03)

Read out the function code of multiple register is 0x03.

Table 10- 5 Read Multiple Registers

Name Name Description
Slave station
address

If the RS485 address is not specified, the

default is 01.

0x03 Function code

Initial address The initial address of register refer to

Modbus instruction set.

Quantity of read

multiple registers

0001~006A

(106)

Continuously read quantity of register refer

to Modbus instruction set. To make sure all

register address are exit, otherwise it returns

error frame.

CRC-16 Check code

Figure 10- 6 Read Multiple Register (0x03) Response Frame

Name Name Description
Slave station
address

Original return

0x03 or 0x83 Function code No exceptional: 0x03
Error code: 0x83

Byte number = quantity of register x 2
For Example, 1 register returns 02

Data Read data

CRC-16 Check code



3.5 Write Multiple Registers

Figure 10- 7 Write Multiple Registers (0x10)

Table 10- 6 Write Multiple Registers

Name Name Description
Slave station
address

If the RS485 address is not specified, the default

is 01.

0x10 Function code

Initial address The initial address of register refer to Modbus

instruction set.

Quantity of write

multiple registers

0001~0068 (104)

Continuously read quantity of register refer to

Modbus instruction set. To make sure all register

address are exit, otherwise it returns error frame.

Byte number = quantity of register x2

CRC-16 Check code

Figure 10- 8 Write Multiple Registers (0x03) Response Frame

Name Name Description
Slave station
address

Original return

0x10 or 0x90 Function code No exceptional: 0x10
Error code: 0x90

Initial address
Quantity of register

CRC-16 Check code

3.6 Echo Test

The function code of echo test is 0x08, it used to debug Modbus.

Figure 10- 9 Echo Test (0x08)

Command



Response

Name Name Description
Slave station
address

Original return

0x08 Function code
Fixed value 00 00
Test data Arbitrary numerical value, such as 12 34

CRC-16 Check code

For example, assume that the test data is 0x1234



4.Modbus (RTU) Instruction Set

This chapter contains the following content.

 Register Address

! Unless otherwise specified, numerical value of the instruction and response frame are all
hexadecimal data.

4.1 Register Overview

The following lists all register addresses used by the instrument, any address not in the Table 11-1 will

return error code 0x02.

Table 11- 1 Register Overview
Register Address Name Numerical Value Description

2000 Read the measured
resistance value

4 bytes float-point
number

Read-only, data occupies 2
registers, 4 bytes.
Byte sequence is ABCD, LSB

2100 Read the comparator
result of channel

4 bytes integer Read-only, data occupies 2
registers.

2200 Read the measured
result

4 bytes float-point
number

Read-only, data occupies 2
registers, 4 bytes.
Byte sequence is CDAB.

2300 Trigger one time and
read the measured
result
AABB CCDD

4 bytes float-point
number with single
precision
Bit sequence: LSB
AABB CCDD

Read-only, data occupies 2
registers, 4 bytes.
It will automatically go to the
measurement page when
receive the command, and the
trigger mode will be switched to
remote trigger.

2400 Trigger one time and
read the measured
result
CCDD AABB

4 bytes float-point
number
Bit sequence: LSB
CCDD AABB

Read-only, data occupies 2
registers, 4 bytes.
It will automatically go to the
measurement page when
receive the command, and the
trigger mode will be switched to
remote trigger.

0000 Read the version
number of the
instrument

4 bytes integer Read-only, data occupies 2
registers, 4 bytes.

3000 Range number 0000~0009 Read and write register, 2
bytes integer.

3001 Auto range 0000: auto
0001: manual
0002: nominal

Read and write register, 2
bytes integer.

3002 Test speed 0000: slow
0001: middle
0002: fast

Read and write register, 2
bytes integer.



3003 Boot load file 0000: file 0
0001: the current
file

Read and write register, 2
bytes integer.

3004 Automatically save 0000: forbidden
0001: allow

Read and write register, 2
bytes integer.

3005 System language 0000: English
0001: simplified
Chinese

Read and write register, 2
bytes integer.

3006 Beeper 0000: OFF
0001: qualified
beeper
0002: unqualified
beeper

Read and write register, 2
bytes integer.

3008 Trigger 0000: internal
trigger
0003: external
trigger

Read and write register, 2
bytes integer.

3009 Trigger delay 0: turn off trigger
delay
Range of 4 bytes
float-point number:
0.1~9.0s

Read and write register, 2
bytes integer.

3100 Scale number of
comparator

0000: turn off the
comparator
0001: 1-BIN
0002: 2-BIN
0003: 3-BIN
0004

Read and write register, 2
bytes integer.

3101 Comparator mode 0000: ABS
0001: PER
0002: SEQ

Read and write register, 2
bytes integer.

3102 Nominal 4 bytes float-point
number

Read and write register, data
occupies 2 registers.

3110 Lower limit of BIN1 4 bytes float-point
number

Read and write register, data
occupies 2 registers.

3112 Upper limit of BIN1 4 bytes float-point
number

Read and write register, data
occupies 2 registers.

3114 Lower limit of BIN2 4 bytes float-point
number

Read and write register, data
occupies 2 registers.

3116 Upper limit of BIN2 4 bytes float-point
number

Read and write register, data
occupies 2 registers.

3118 Lower limit of BIN3 4 bytes float-point
number

Read and write register, data
occupies 2 registers.

311A Upper limit of BIN3 4 bytes float-point
number

Read and write register, data
occupies 2 registers.

311C Lower limit of BIN4 4 bytes float-point
number

Read and write register, data
occupies 2 registers.

311E Upper limit of BIN4 4 bytes float-point
number

Read and write register, data
occupies 2 registers.

3120 Lower limit of BIN5 4 bytes float-point
number

Read and write register, data
occupies 2 registers.

3122 Upper limit of BIN5 4 bytes float-point
number

Read and write register, data
occupies 2 registers.

3124 Lower limit of BIN6 4 bytes float-point Read and write register, data



number occupies 2 registers.
3126 Upper limit of BIN6 4 bytes float-point

number
Read and write register, data
occupies 2 registers.

4000 Save the settings to the
current file

Fixed value: 0001 Write-only register, data is 2
bytes.

4001 Read the current file
data

Fixed value: 0001 Write-only register, data is 2
bytes.

4002 Save the settings to the
specified file

0000~0009 Write-only register, data is 2
bytes.

4003 Read the specified file
data

0000~0009 Write-only register, data is 2
bytes.

5000 Execute zero clearing
register
Read the state of zero
clearing register

Read:
0001: zero clearing
0000: zero clearing
is success

Read-only register, data
occupies 1 register.

5001 Key lock 0000: unlock
0001: lock

Write-only register, 2 bytes.

5002 Trigger one time =
Handler Trig pin

Fixed value:
0001

Write-only register, 2 bytes.

4.2 Fetch Measured Data

4.2.1 Fetch Measured Data
Register 2000~2003 is used to fetch measured data of the instrument.
For example, fetch measured data

Command

1 2 3 4 5 6 7 8
01 03 2000 0002 CRC-16

Slave
station

Read Register Quantity of
register

Check code

Response

1 2 3 4 5 6 7 8 9
01 03 Byte Float-point number with single

precision
CRC-16

 Fetch Measured Data

Send

1 2 3 4 5 6 7 8
01 03 20 00 00 02 CF CB

Response

1 2 3 4 5 6 7 8 9
01 03 04 60 AD 78 EC 56 5F

B4~B6 is measured data: 60AD78EC indicates float-point number with single

precision, LSB.



Byte sequence: A BB CC DD, convert to decimal numeral 1E20.

4.2.2 Fetch Comparator Result [2100]
Returned 4 bytes integer indicates the comparator result.

00: unqualified

01: qualified 1

02: qualified 2

03: qualified 3

04: qualified 4

05: qualified 5

06: qualified 6

Send
1 2 3 4 5 6 7 8
01 03 21 00 00 02 CE 37

Response
1 2 3 4 5 6 7 8 9
01 03 04 00 00 00 00

4.2.3 Fetch Measured Result (CCDD AABB) [2200]
Register 2200~2203 is used to fetch measured data of instrument.

For example, fetch measured data.

Command

1 2 3 4 5 6 7 8
01 03 2200 0002 CRC-16

Slave
station

Read Register Quantity of
register

Check code

Response

1 2 3 4 5 6 7 8 9
01 03 Byte Float-point number with single

precision
CRC-16

 Fetch Measured Data

Send

1 2 3 4 5 6 7 8
01 03 22 00 00 02 CE 73

Response

1 2 3 4 5 6 7 8 9
01 03 04 43 8D 3F 80 6F CC

B4~B6 is measured data: 43 8D 3F 80 indicates float-point number with single

precision, MSB.

Byte sequence: CC DD AA BB

Exchange byte sequence AABBCCDD: 3F 80 8D 43 convert to decimal numeral



1.0020614862442017

4.2.4 Trigger One Time and Return Measured Result (AABB CCDD) [2300]
Register 2300~2303 is used to fetch measured data of instrument.

For example, fetch measured data.

Command

1 2 3 4 5 6 7 8
01 03 2300 0002 CRC-16

Slave
station

Read Register Quantity of
register

Check code

Response

1 2 3 4 5 6 7 8 9
01 03 Byte Float-point number with single

precision
CRC-16

 Fetch Measured Data

Send

1 2 3 4 5 6 7 8
01 03 23 00 00 02 CF 8F

Response

1 2 3 4 5 6 7 8 9
01 03 04 3F 80 44 98 C5 65

B4~B6 is measured data: 3F80 4498 indicates float-point number with single precision,

LSB.

Byte sequence: AA BB CC DD convert to decimal numeral 1.0020933151245117.

i It will automatically go to the measurement page when receive this command, and the trigger mode
will be switched to remote trigger.

4.2.5 Trigger One Time and Return Measured Result (CCDD AABB) [2400]
Register 2400~2403 is used to fetch measured data of instrument.

For example, fetch measured data.

Command

1 2 3 4 5 6 7 8
01 03 2400 0002 CRC-16

Slave
station

Read Register Quantity of
register

Check code

Response

1 2 3 4 5 6 7 8 9
01 03 Byte Float-point number with single

precision
CRC-16



 Fetch Measured Data

Send
1 2 3 4 5 6 7 8
01 03 24 00 00 02 CF CB

Response

1 2 3 4 5 6 7 8 9
01 03 04 44 CE 3F 80 9F 6C

B4~B6 is measured data: 44CE 3F80 indicates float-point number with single

precision, MSB.

Adjusting byte sequence CCDD AABB to AABBCCDD, that is 3F8044CE converts to

decimal numeral 1.0020997524261475.

4.3 Parameter Setup

4.3.1 Speed [3002]
Write

1 2 3 4 5 6 7 8 9 10 11
01 10 30 02 00 01 02 00 01 56 71

Write Register Quantity of register Byte Data CRC

Response

1 2 3 4 5 6 7 8
01 10 30 02 00 01 AF 09

Register Quantity of register CRC

Read

1 2 3 4 5 6 7 8
01 03 30 02 00 01 2A CA

Read Register Quantity of register CRC

Response

1 2 3 4 5 6 7
01 03 02 00 00 B8 44

Byte Data CRC

0000: slow speed

0001: middle speed

0002: fast speed

0003: high speed



4.4 Comparator Setup

The register address of comparator parameter is from 3100.

4.4.1 Nominal Value [3102-3103]
The nominal value uses 2 registers, 3102 and 3103.

Note: 3103 cannot read alone.

Write

100E-3 (Float-point number with single precision: 0x3DCCCCCD)

1 2 3 4 5 6 7 8 9 10 11 12 13
01 10 31 02 00 02 04 3D CC CC CD 72 E1

Write Register Quantity of register Byte Data CRC

Response

1 2 3 4 5 6 7 8
01 10 31 02 00 02 EE F4

Register Quantity of register CRC

Read

1 2 3 4 5 6 7 8
01 03 31 02 00 02 6B 37

Read Register Quantity of register CRC

Response

1 2 3 4 5 6 7 8 9
01 03 04 3D CC CC CD A3 35

Byte Data 100E-3 CRC

4.4.2 Limit Value [3110-3126]
The limit value of 6-scale comparator is start from 3110 and end with 3126. Each comparator

uses 2 registers for the lower limit and 2 registers for the upper limit, a total of 4 registers.

The lower limit and the upper limit can separately set or set at the same time.

 Write

Lower limit: 1E-3, Upper limit: 2E3

Send: 01 10 3110 0004 08 3A83126F 3B03126F 6384

Response: 01 10 3110 0004 CEF3

 Read

Send: 01 03 3110 0004 4B30

Response: 01 03 08 3A83126F 3B03126F C2A7

4.5 File Operation

Since the instrument settings are stored in a file, if the [Auto Save] in the <File> page is not turned

on, the data cannot be stored in real time in the internal FlashRom after all Modbus commands have



been set. It will cause the register data being restored to the original file values before the next

power-up.

The user can use file operation register to save all settings to the current file or the specified file. At

the same time, the specified file data can also load to the register.

i Turn on the [Auto save] in the <File> page, the parameter will automatically save after set each

time. The file command can be disregarded.

4.5.1 Save to the Current File [4000]
Send 0001 to the register 4000, the instrument will execute file write, all settings will save to the

current file.

This register cannot read.

Write

1 2 3 4 5 6 7 8 9 10 11
01 10 40 00 00 01 02 00 01 26 54

Write Register Quantity of register Byte Data CRC

Response

1 2 3 4 5 6 7 8
01 10 40 00 00 01 14 09

Register Quantity of register CRC

Data

Data Function Description
0001 Allow to operate Fixed value

4.5.2 Reload the Current File [4001]
Send the fixed value 0001to the register 4001, the instrument will load the current file data to the

system.

This register cannot read.

Write

1 2 3 4 5 6 7 8 9 10 11
01 10 40 01 00 01 02 00 01 27 85

Write Register Quantity of register Byte Data CRC

Data

Data Function Description
0001 Fixed value

4.5.3 Save to the Specified File [4002]
Send the file number to the register 4002, the instrument will execute file write operation, all

setting will save to the specified file. At the same time, the specified file will used as the current

system file.

This register cannot read.



Write

1 2 3 4 5 6 7 8 9 10 11
01 10 40 02 00 01 02 00 01 27 85

Write Register Quantity of register Byte Data CRC

Data

Data Function Description
0000~0009 File 0~9

4.5.4 Load the Specified File [4003]
Send the file number to the register 4003, the instrument will load the specified file to the system.

At the same time, the specified file will used as the current system file.

This register cannot read.

Write

1 2 3 4 5 6 7 8 9 10 11
01 10 40 03 00 01 02 00 01 26 67

Write Register Quantity of register Byte Data CRC

Data

Data Function Description
0000~0009 File 0~9

4.6 System Function

4.6.1 Zero Clearing [5000]
The instrument will start to execute short-circuit zero clearing when read the register 5000.

Before zero clearing, the test wire should be short-circuit, otherwise, zero clearing will be failed.

The process of zero clearing takes few seconds.

During the execution of zero clearing or after zero clearing is completed, the state of zero

clearing will be returned.

0000: Zero clearing is success.

FFFF: Zero clearing is failed.

 Read

During the execution of zero clearing, determine whether zero clearing is completed by read

register data.

Send: 01 03 5000 0001 950A

Response: 01 03 02 0000 ####

4.6.2 Key lock [5001]
Write key lock command 5001, Data 0000:

01 10 50 01 00 01 02 00 00 F7 84



4.6.3 Trigger [5002]
Write trigger command 5002, data 0001:

01 10 50 02 00 01 02 00 01 36 77

i This command returns an error code only under internal trigger.


	1.SCPI 
	1.1Parse Command String
	1.1.1Command Parse Rule
	1.1.2Symbol Stipulation and Definition
	1.1.3Command Tree Structure

	1.2Command and Parameter
	1.2.1Command
	1.2.2Parameter
	1.2.3Separator
	1.2.4Error Code 


	2.Command Reference
	2.1DISPlay Subsystem
	2.1.1DISPlay:PAGE
	2.1.2DISP:LINE

	2.2FUNCtion Subsystem
	2.2.1FUNCtion:RANGe
	2.2.2FUNCtion:RANGe:MODE
	2.2.3FUNCtion:RATE
	2.2.4FUNCtion:TC
	2.2.5FUNCtion:TC: COEFficient
	2.2.6FUNCtion:TC:REFErence
	2.2.7FUNCtion:DT
	2.2.8FUNCtion:DT:T1
	2.2.9FUNCtion:DT:R1
	2.2.10FUNCtion:DT:K

	COMParator Subsystem
	2.2.11COMParator[:STATe]
	2.2.12COMParator:BEEP
	2.2.13COMParator:MODE
	2.2.14COMParator:NOMinal
	2.2.15COMParator:BIN

	2.3TRIGger Subsystem
	2.3.1TRIGger[:IMMediate]
	2.3.2TRIGger:SOURce
	2.3.3TRIGger:DELAy
	2.3.4TRG

	2.4FETCh? Subsystem
	2.4.1FETCh?  
	2.4.2FETCh:RT? 
	2.4.3FETCh:T2? 

	2.5SYSTem Subsystem
	2.5.1SYSTem:LANGuage 
	2.5.2SYSTem:TIME 
	2.5.3SYSTem:KEYLock or SYSTem:KLOCk 
	2.5.4SYSTem:BEEPer 
	2.5.5SYSTem:SHAKhand (Return data header)
	2.5.6SYSTem:UPLOAD (UPLD) (Send test result)

	2.6CORRect Subsystem
	2.6.1CORRect:STATe
	2.6.2CORRect:SHORt

	2.7FILE (MMEM) Subsystem
	2.7.1FILE:SAVE (Save file)
	2.7.2FILE:LOAD (Read file)
	2.7.3FILE:DELete (Delete the specified file)
	2.7.4SAV
	2.7.5RCL

	2.8IDN? Subsystem
	2.9ERRor Subsystem

	3.Modbus (RTU) Communication Protocol
	3.1Data Format
	3.1.1Command Frame 
	3.1.2CRC-16 Calculation Method
	3.1.3Response Frame
	3.1.4No Response
	3.1.5Error Code

	3.2Function Code 
	3.3Register
	3.4Read Multiple Registers
	3.5Write Multiple Registers
	3.6Echo Test

	4.Modbus (RTU) Instruction Set
	4.1Register Overview
	4.2Fetch Measured Data
	4.2.1Fetch Measured Data
	4.2.2Fetch Comparator Result [2100]
	4.2.3Fetch Measured Result (CCDD AABB) [2200]
	4.2.4Trigger One Time and Return Measured Result (AABB 
	4.2.5Trigger One Time and Return Measured Result (CCDD 

	4.3Parameter Setup
	4.3.1Speed [3002]

	4.4Comparator Setup
	4.4.1Nominal Value [3102-3103]
	4.4.2Limit Value [3110-3126]

	4.5File Operation
	4.5.1Save to the Current File [4000]
	4.5.2Reload the Current File [4001]
	4.5.3Save to the Specified File [4002]
	4.5.4Load the Specified File [4003]

	4.6System Function
	4.6.1Zero Clearing [5000]
	4.6.2Key lock [5001]
	4.6.3Trigger [5002]



